

ÍTEM 2 – DIAGNÓSTICO

ÍTEM 2.2 – BANCO DE DADOS DO PLANO DIRETOR DE DRENAGEM DO MUNICÍPIO DE NATAL (SIG-DREN)

NATAL/RN, Outubro/2009

PLANO DIRETOR DE DRENAGEM E MANEJO DE ÁGUAS PLUVIAIS DA CIDADE DO NATAL

ITEM 2.2 – BANCO DE DADOS RELATÓRIO CONSOLIDADO

NATAL/RN, Outubro/2009

EQUIPE DO PLANO DIRETOR DE DRENAGEM E MANEJO DE ÁGUAS PLUVIAIS (PPDDMA)

Demétrio Paulo Torres – Secretário Municipal de Obras e Infra Estrutura Luciano Rebello da Cunha Melo – Secretário Adjunto de Planejamento de Obras

GRUPO DE TRABALHO LOCAL

Vital Gorgônio da Nóbrega Engenheiro Civil – Coordenador – SEMOPI

José Edilson Bezerra – Engenheiro Civil – Sub-Coordenador – SEMURB

Francisco Werton Diógenes - Engenheiro Civil – SEMOPI

Ivanilde Ramos da Silva – Engenheira Sanitarista - SEMSUR

Uéliton Cabral da Silva – Geográfo – SEMOPI

EQUIPE TÉCNICA L. R. ENGENHARIA E CONSULTORIA LTDA

Alberto de Melo Rodrigues – Engenheiro Civil CREA 210.405.683-7 (Coordenador Geral)

Diógenes Santos de Sena – Eng. Civil e Mestre em Eng. Sanitária CREA 210.136.107-8

Marcos Roberto de Melo R. Filgueira – Engenheiro civil CREA 210.416.831-7

Geová Alves da Costa– Técnico em Topografia CREA 210.266.657-4

Mércia Targino de Oliveira – Técnica em Edificações

Roberto Silva de Oliveira – Cadista

Eberth Ferreira de Oliveira – Cadista

EQUIPE TÉCNICA RESPONSÁVEL PELO RELATÓRIO

Reinaldo Antonio Petta - Doutor em Geociências (UCL- Bélgica) CREA 060.042.263-6

Thomas Ferreira Costa Campos - Doutor em Geociências (Univ. Porto – Portugal)

Cynthia Romariz Duarte - Doutor em Geociências - Geoprocessamento (UNESP)

Paulo Sergio Resende Nascimento - Doutor em Geociências - Geoprocessamento (UNESP)

Ludmagna Pereira de Araujo - Mestre em Geociências (UFRN)

Rodrigo Cysneiros Fernandes - Mestre em Geociências - Geoprocessamento (UFRN)

Darlington Roberto B. Farias – Técnico e Aluno de Mestrado da Geografia UFRN Luiz Antonio Nascimento de Paiva – Técnico e Aluno de Mestrado da Geografia UFRN

Equipe de Apoio

Igor Peregrino da Silva Sena (aluno Graduação)

Solano Braz Petta (aluno Graduação)

Cecília Alves de Oliveira (aluno Graduação)

Luiz Gustavo Moraes de Macedo (aluno Graduação)

Evanimek Bernardo Sabino (aluno Graduação)

SUMÁRIO

1. INTRODUÇÃO	01
2. JUSTIFICATIVA	02
3. RELATÓRIO DE BANCO DE DADOS	03
3.1. Metodologia	03
3.1.1. Objetivo Geral	04
3.1.2.Objetivo Específico	04
3.2. Etapas Metogológicas estabelecidas no Plano de trabalho do PDDMA	05
3.3. Análise de resultado	07
4. ELABORAÇÃO DO BACO DE DADOS	07
5. MAPAS TEMÁTICOS	09
5.1. Estudos Hidrológicos	10
5.2. Estudos Urbanísiticos	11
5.3. Estudos Socioeconômicos	18
5.4. Estudos Ambientais	37
5.5. Estudos Hidrogeológicos	41
5.6. Estudos de Saneamento básico	45
6. LEVANTAMENTO CADASTRAL DA REDE DE DRENAGEM E (OUTRAS
INFORMAÇÕES DO BANCO DE DADOS	51
REFERÊNCIA BIBLIOGRÁFICA	122

LISTA DE FIGURAS

Figura 01 - Modelo Conceitual do Banco de dados deste projeto	07
Figura 02 - Fluxograma da Estrutura de Informações do Banco de	dados deste
projeto	08
Figura 03 - Nível de Informação que está sendo trabalhado neste band	o de dados.
Será utilizado o maior nível que é o MURB - 5 que contém informaçõe	es a nível de
detalhe sobre Eixos viários com nome e numeração de esquina, l	nserção das
quadras, Inserção dos Lotes e Inserção das redes (no caso, os atributos	da Rede de
Drenagem)	08
Figura 04 - Mapas das bacias de drenagem (roxo) e sub-bacias d	e drenagem
(verde)	10
Figura 05 - Mapas dos pontos de inundação	10
Figura 06 - Mapas das isócronas das sub-bacias	11
Figura 07 - Mapa da macha urbana e tendência de crescimento	11
Figura 08 - Mapa de indicadoes de parcelamento do solo	12
Figura 09 - Mapa do risco de deslizamento do solo	12
Figura 10 - Mapa do risco de erosão do solo	13
Figura 11 - Mapa do risco de inundação	13
Figura 12 - Mapa do risco de queda de barreira	14
Figura 13 - Mapa de presença de forte verticalização por bairro	14
Figura 14 - Mapa de projeção da população para 2010 por bairro	15
Figura 15 - Mapa da projeção da população para 2018 por bairro	15
Figura 16 - Mapa da projeção da população para 2028 por bairro	16
Figura 17 - Mapas dos pontos críticos de drenagem	16
Figura 18 - Mapa da taxa de infiltração por bacia de drenagem	17
Figura 19 - Mapa do coefiente de deflúvio por sub-bacia de drenagem	17
Figura 20 - Mapa do coeficiente de deflúvio de sub-bacia de drenagem .	18
(LR) ENGENHARIA E CONSULTORIA LTDA	

Figura 21 - Mapa da população total por bairro18
Figura 22 - Mapa da população total masculina por bairro19
Figura 23 - Mapa da população total feminina por bairro19
Figura 24 - Mapa da média de moradores por domicílio por bairro20
Figura 25 - Mapa de Faixa etária da população por bairro (O Banco de dados
apresenta mapas de faixa etária para intervalos de 5 anos de idade)20
Figura 26 - Mapa de número de casas por bairro21
Figura 27 - Mapa do número de apartamentos por bairro21
Figura 28 - Mapa do número de cômodos por bairro22
Figura 29 - Mapa do número de domícilios coletivos por bairro22
Figura 30 - Mapa do número de domicílios improvisados por bairro23
Figura 31 - Mapa do número da população residente em domicílos permanentes por
bairros23
Figura 32 - Mapa do número de domicílos próprios quitados por bairro24
Figura 33 - Mapa do número de domicílios em aquisição por bairro24
Figura 34 - Mapa do número de domicílios alugados por bairro25
Figura 35 - Mapa do número de domicílios cedidos por empregadores por bairro .25
Figura 36 - Mapa do número de terrenos próprios por bairro26
Figura 37 - Mapa do número de terrenos cedidos por bairro26
Figura 38 - Mapa do Índice de Desenvolvimento de Domicílios (IDM) por bairro27
Figura 39 - Mapa do Índice de Qualidade de Vida (IDV) da população por bairro27
Figura 40 - Mapa da média de anos de estudo da população por bairro28
Figura 41 - Mapa do número da população total alfabetizada por bairro28
Figura 42 - Taxa de alfabetização da população de 5 ou mais anos por bairro29
Figura 43 - Mapa da renda média em salários minímos da população por bairro29
Figura 44 - Mapa do número de domicílios com renda menor que 0,25 salários
mínimos
Figura 45 - Mapa do número de domicílios com renda entre ¾ e 1 salário minímos 30

Figura 46 - Mapa do número de domicílos com renda superior a 30 salários
minímos31
Figura 47 - Mapa do número de domicílios cujo responsável não possuem renda31
Figura 48 - Mapa do número de domícilios abastecidos por poço ou nascente por
bairro32
Figura 49 - Mapa do número de domicílios com banheiro ou sanitário por bacia32
Figura 50 - Mapa do número de domicílios abastecidos pela rede de água por
bairro33
Figura 51 - Mapa do número de domicílios que possuem fossa rudimentar33
Figura 52 - Mapa do número de domicílios que possuem fossa séptica34
Figura 53 - Mapa de porcentagem de atendimento por rede de esgoto por bairro
bairro34
Figura 54 - Mapa do número de domicílios atendidos pela coleta de lixo35
Figura 55 - Mapa do número de domicílios com lixo incinerado35
Figura 56 - Mapa do número de domicílios com lixo enterrado36
Figura 57 - Mapa do número de domicílios dispostos pelo lançamento a céu aberto
36
Figura 58 - Mapa do número de domicílios dispostos pelo lançamento em rios37
Figura 59 - Mapas de Hipsometria e de Recursos Hídricos, adquiridos,
georeferenciados e inseridos no banco de Dados
Figura 60 - Zonas de proteção ambiental e limites de bairros38
Figura 61 - Mapa geológico da cidade de Natal38
Figura 62 - Mapa geomorfológico da cidade de Natal39
Figura 62 - Mapa geomorfológico da cidade de Natal
Figura 63 - Mapa pedológico da cidade de Natal39
Figura 63 - Mapa pedológico da cidade de Natal
Figura 63 - Mapa pedológico da cidade de Natal

Figura 68 - Mapa de linhas equipotenciais	42
Figura 69 - Mapa de linhas de isoprofundidade	42
Figura 70 - Mapa de linhas de isonitrato	43
Figura 71 - Mapas de poços com alta concentração de nitrato	43
Figura 72 - Mapas com alta concentração de coliformes fecais	44
Figura 73 - Mapas dos poços da CAERN	44
Figura 74 - Mapas com as captações e suas divisões	45
Figura 75 - Mapas das Estações elevatórias de esgoto existentes e projetadas	45
Figura 76 - Mapas das Estações elevatórias de esgoto existentes e projetadas	46
Figura 77 - Mapas das Estação elevatórias de água e de esgoto e Estações	de
tratamento de água e de esgotos suscetíveis a interferência no sistema	de
drenagem	46
Figura 78 - Mapa das Estações de tratamento de água e de esgoto	47
Figura 79 - Mapa dos pontos críticos do sistema de drenagem	47
Figura 80 - Mapa dos poços para abastecimento de água	48
Figura 81 - Mapa dos reservatórios de abastecimento de água e emissário de águ	ıas
pluviais	48
Figura 82 - Mapa da frequência de varrição	49
Figura 83 - Mapa de área de atendimento do sistema de abastecimento de água .	49
Figura 84 - Mapa da frequência de atendimento da coleta de lixo	50
Figura 85 - Imagens dos satélites Spot e Ikonos com detalhes da área do municí	pio
de Natal. Estas imagens foram adquiridas e georeferenciadas e se encontram	já
inseridas no Banco de Dados	51
Figura 86 - Vista de um recorte do banco de dados onde se pode observar	na
imagem superior a foto aérea georeferenciada com o overlay das curvas de ní	vel
sobre esta. Na outra imagem inferior temos um recorte mostrando o nível de detal	lhe
(Nivel MURB – 5) com ruas, quadras, lotes, edificações e curvas de nível	52
Figura 87 - Vista de um recorte do banco de dados da área do Centro	de
Convenções da Via Costeira, onde se pode notar a composição de três níveis	de
(L.R) ENGENHARIA E CONSULTORIA LTDA	

informação: (i) foto aérea georeferenciada com o overlay das curvas de nível, (ii) Recorte mostrando o nível de detalhe (Nivel MURB – 5) com ruas, quadras, lotes, edificações e curvas de nível, e (iii) Detalhe da área do Centro de Convenções.....53 Figura 88 - Vista de um recorte do banco de dados da área da Lagoinha (Ponta Negra), onde se pode observar a composição de vários níveis de informação como a foto aérea georeferenciada com o overlay das curvas de nível, e detalhes das ruas, quadras, lotes, edificações e curvas de nível, e em destaque a área do Conjunto Ponta Negra com seus atributos contidos no Banco de Dados54 Figura 89 - Demonstrativo dos Níveis de Informação do banco de dados, com destaque na imagem superior das possibilidades de habilitar ou desabilitar os níveis de informação a serem visualizadas no SIG55 Figura 90 - Recorte do banco de dados apresentando a analise da altimetria da área do Centro de tradições gauchas (Ponta Negra) e detalhes da carta digitalizada do Conjunto Ponta Negra56 Figura 91 - Recorte do banco de dados apresentando uma consulta sobre a altimetria de uma lagoa de estabilização localizada próxima do Shopping Praia Mar (Ponta Negra)......57 Figura 92A e 92B - Recorte do banco de dados da área da Lagoa do Centro de Tradições Gauchas (CTG - Ponta Negra), onde foi realizada uma consulta no Banco de dados para se conhecer a cota (altimetria) da área do CTG (33m) para avaliação da área a ser atingida em caso de inundação da lagoa ao lado, de cota 30m (imagem 13b)58 Figura 93 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) onde pode-se observar as fotos aéreas mosaicadas e integradas ao relevo do terreno. Modelo em três dimensões (3D da altimetria) com as feições reais das drenagens, onde pode-se observar as partes altas e os canais mais baixos das drenagens......59 Figura 94 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) onde pode-se observar as fotos aéreas mosaicadas e integradas ao relevo do terreno. Modelo em três dimensões (3D da altimetria) com exagero vertical para realçar as

L.R.) ENGENHARIA E CONSULTORIA LTDA

feições reais das drenagens, onde pode-se observar as partes altas e os canais
mais baixos das drenagens60
Figura 95 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) destacado
em níveis de altimetria e baseado nas imagens mostradas acima (Fig 93 e 94)61
Figura 96 - Mostra o Banco de Dados com a plotagem das obras e feições de infra-
instrutura existentes da drenagem urbana de Natal (bocas-de-lobo, poços de visita,
rios e córregos canalizados, lagoas, etc.) juntamente com as curvas de nivel do
terreno62
Figura 97 - Semelhante a anterior (fig 96), somente que nesta visão foram retiradas
as curvas de nível. Isto mostra uma das ferramentas do banco de dados que permite
visualizar os níveis de informação que se desejar e combinar e modelar entre eles 63
Figura 98 - Semelhante às figuras anteriores (fig. 96 e 97), somente que nesta visão
foram acrescentadas as fotos aéreas da área, novamente permitindo visualizar os
níveis de informação que se desejar e combinar e modelar entre eles63
Figura 99 - Mostra uma ampliação do Banco de Dados com a plotagem das quadras
e ruas juntamente com as obras e feições de infra-instrutura tendo ao fundo as fotos
aéreas da área64
Figura 100 - Mostra uma ampliação maior da figura anterior com destaque para os
detalhes das feições de infra-instrutura da drenagem urbana de Natal (bocas-de-
lobo, poços de visita, canais, ligações, etc.)64
Figura 101 - A mesma imagem da figura anterior (fig.100) tendo ao fundo tendo ao
fundo as fotos aéreas da área65
Figura 102 - Vista geral do banco de dados de toda Natal, com os níveis de
informação de curvas de nível, quadras e lotes, rede de drenagem existente e infra-
estrutura urbana (bocas-de-lobo, poços de visita, rios e córregos canalizados,
lagoas, etc.)66
Figura 103 - Vista geral do banco de dados de toda Natal, com os níveis de
informação de curvas de nível, quadras e lotes, rede de drenagem existente e infra-
estrutura urbana (bocas-de-lobo, poços de visita, rios e córregos canalizados,

ENGENHARIA E CONSULTORIA LTDA

lagoas, etc.), e ao fundo as fotografías aéreas georeferenciadas. Notar do lado esquerdo da figura o painel com os diversos níveis de informações que posso habilitar ou desabilitar de acordo com o que quero visualizar na tela67 Figura 104 - Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. Como o Banco de dados é relacional e orientado a objeto, qualquer informação que quero consultar no universo de milhares de dados existentes no banco, posso fazer a pesquisa diretamente na base de dados e apresentar o resultado na tela.......68 Figura 105 - O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é a mesma da figura anterior, somente difere porque Figura 106 - O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é semelhante a consulta anterior, mudando o número do poço de visita. Na foto está destacado em AMARELO o poço de visita 53 e no banco de dados deste poço (tabela) pode-se ver seus dados e atributos, como sua altura (H) 1,22, a cota do fundo 39,03, a cota da boca 40,35 e seu diametro (diam) 0,670 Figura 107 - O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é semelhante a consulta anterior, apenas mudando o número do poço de visita. Na foto está destacado em AMARELO o poço de visita 61 e que fica em outra linha de drenagem, perpendicular á linha anterior71 Figura 108 - Detalhe do Sistema ARCGIS, apresentando em destaque a malha da infra-estrutura da drenagem sobre o mapa do município com ruas e quadras e sobre estas, com destque em rosa as diversas bocas de lobo já cadastradas......72 Figura 109 - Detalhe do Sistema ARCGIS, apresentado em destaque 3 visões diferentes da malha da infra-estrutura da drenagem (destacada em amarelo) sobre o mapa do município com ruas e quadras e sobre estas, com destque em rosa as diversas bocas de lobo já cadastradas73

Figura 110 - Visão Geral do Banco de dados, já implementado no Sistema SIG, on	de
pode-se ver a Zona Norte de natal com suas respectivas feições de drenagem	74
Figura 111 - Visão Geral do Banco de dados (Zona Norte)	75
Figura 112 - Visão Geral do BD com os Poços de visita e Linhas, com suas <i>lab</i> e	əls
em CAD	76
Figura 113 - Rios, lagos e lagoas da zona oeste com divisão de bairros	76
Figura 114 - Poços de visita não executados (magenta) e executados (azul)	77
Figura 115 - Arruamento e poços de visita	77
Figura 116 - Linhas de galerias, poços de visita e <i>labels</i> . Destaque para consulta a	ao
BD do SIG	78
Figura 117 - Linhas de galerias, Poços de visita e <i>label</i> s, tabela de atributos dos P\	/'s
em SIG	78
Figura 118 - Poços de visita contidos na bacia 03 selecionados no SIG	79
Figura 119 - Poços de visita e arruamento sobre a imagem aérea	79
Figura 120 - Poços de visita sobre modelo digital de terreno	80
Figura 121 - Poços de visita arruamento, curvas de nível e <i>label</i> s em CAD e SIG8	80
Figura 122 - Poços de visita e arruamento sobre MDT (Modelo Digital de Terreno).	81
Figura 123 - Poços de visita (executada em azul e não executada em magenta)	е
limites de bacias (roxo) e sub-bacias (verde)	81
Figura 124 - Poços de visita linhas de distribuição	82
Figura 125 - Poços de visita linhas de distribuição (consulta ao banco)	82
Figura 126 - Elementos de drenagem, arruamento e imagens em uma	só
visualização	83
Figura 127 - Poços de visita e galerias sobre imagens	83
Figura 128 - Poços de visita e galeria sobre Modelo Digital de Terreno	84
Figura 129 - Poços de visita e galeria com arruamento sobre Modelo Digital o	de
Terreno	84
Figura 130 - Vista Parcial do banco de dados	85

Figura 131 - PV's e seus valores desenhados, tubos, arruamento e nomes das ruas
e curvas de nível85
Figura 132 - PV's e seus valores desenhados, tubos, arruamento e nomes das
ruas86
Figura 133 - PV's e seus valores desenhados, tubos e nomes das ruas86
Figura 134 - Sobreposição da figura anterior ao mapa de uso e ocupação do solo .87
Figura 135 - Sobreposição dos PV's e tubos ao mapa das ZPA's e indicação da ZPA
zotoposta87
Figura 136 - Sobreposição dos PV's ao Modelo Digital de Terreno88
Figura 137 - Sobreposição dos PV's ao modelo digital de terreno junto com curvas
de nível88
Figura 138 - Sobreposição dos PV's e tubos ao mosaico de fotografias aéreas89
Figura 139 - Sobreposição dos PV's e tubos ao mosaico de fotografias aéreas89
Figura 140 - Sobreposição dos PV's, tubos e arruamento ao mosaico de fotografias
aéreas90
Figura 141 - Sobreposição dos PV's, tubos, arruamento e curvas de nível às
fotografias aéreas90
Figura 142 - Sobreposição parcial dos PV's e tubos às fotografias aéreas91
Figura 143 - Sobreposição parcial dos pv's, tubos e arruamento às fotografias
aéreas91
Figura 144 - Sobreposição parcial dos pv's, tubos, arruamento e curvas de nível às
fotografias aéreas92
Figura 145 - Detalhe para os dados dos pv's em planta, os pv's e os tubos92
Figura 146 - Consulta das informações contidas no PV em verde93
Figura 147 - Figura anterior completamente posicionada sobre fotografias aéreas .93
Figura 148 - Figura anterior sem fotografias aéreas94
Figura 149 - PV's e divisão de bacias e suba-bacias de drenagem94
Figura 150 - Seleção por atributos: PV's pertencentes à determinada bacia95
Figura 151 - Resultado da seleção por atributos95

Figura 152 - Resultado da seleção por atributos em tabela96
Figura 153 - Resultado da seleção por atributos em tabela96
Figura 154 - Seleção por atributos: profundidade maior que 5 m97
Figura 155 - Resultado da seleção por atributos97
Figura 156 - Resultado da seleção por atributos em tabela98
Figura 157 - Resultado da seleção por atributos em tabela98
Figura 158 - PV's, tubos, arruamento e divisão de bacias99
Figura 159 - PV's, tubos, arruamento e divisão de bacias, rios e lagoas99
Figura 160 – sobreposição dos PV's e arruamento sobre o mapa de uso e ocupação
do solo100
Figura 161 - Sobreposição dos PV's e arruamento sobre o mapa das ZPA's100
Figura 162 - Sobreposição dos PV's e arruamento sobre o modelo digital de terreno
da zona sul10 ²
Figura 163 - Sobreposição dos PV's sobre o modelo digital de terreno da zona su
101
Figura 164 - Sobreposição dos PV's ao mosaico de fotografias aéreas da cidade 102
Figura 165 - Detalhe da figura anterior102
Figura 166 - Detalhe da figura anterior103
Figura 167 - Arruamento, PV's e tubos
Figura 168 - Imagem mostrando divisão de bacias, arruamento e PV's104
Figura 169 - Arruamento, PV's, temas de drenagem e nomes das ruas104
Figura 170 - Curvas de nível, arruamento, PV's, temas de drenagem e nomes das
ruas
Figura 171 – Curvas de nível, arruamentos, PV´s, temas de drenagem e nomes das
ruas (detalhes)
Figura 172 - Detalhe para os valores dos PV's em planta, arruamento, curvas de
nível e nome das ruas106
Figura 173 - Detalhe para os valores dos PV's em planta, arruamento e nome das
ruas106

Figura 174 - Figura anterior sobreposta ao mapa de uso e ocupação do solo107
Figura 175 - Consulta ao atributo de uso e ocupação do solo da área107
Figura 176 - Sobreposição da figura anterior à fotografia aérea da cidade108
Figura 177 - Detalhe para valores dos PV's em planta, arruamento, tubos
executados e PV's sobrepostos e não sobrepostos à fotografia aérea108
Figura 178 - Figura anterior completamente sobreposta à fotografia aérea109
Figura 179 - Figura anterior acrescida de curvas de nível109
Figura 180 - Figura anterior com retirada parcial das fotografias aéreas110
Figura 181 - Tubos, PV's e seus valores sobrepostos e não sobrepostos à fotografia
aérea110
Figura 182 - PV's e tubos sobrepostos ao modelo digital de terreno111
Figura 183 - Figura anterior acrescida de ruas e nomes de ruas111
Figura 184 - Espacialização do dado em tabela dos PV's no terreno112
Figura 185 - Outra consulta no mesmo aspecto112
Figura 186 - Seleção por atributos, todos os PV´s de uma determinada bacia113
Figura 187 - Resultado da seleção por atributos113
Figura 188 - Exibição dos dados selecionados em tabela114
Figura 189 - Exibição dos dados selecionados em tabela114
Figura 190 - Exibição dos dados selecionados em tabela115
Figura 191 - Comparação dos PV's com zonas de alta incidência de nitrato115
Figura 192 - Comparação dos PV's com zonas de alta incidência de coliformes116
Figura 193 - PV's sobrepostos as ZPA's municipais116
Figura 194 - PV's sobrepostos ao estudo de uso e ocupação do solo do
município117
Figura 195 – PV's sobrepostos ao mosaico de fotografias aéreas do município117
Figura 196 - PV's sobrepostos ao modelo digital de terreno da zona leste118
Figura 197 - Figura anterior acrescida dos limites das bacias118
Figura 198 - PV's proposição (vermelho) para a solução dos pontos críticos na zona
oeste com divisão de bacias (roxo) e sub-bacias (verde)119

Figura 199 - PV's (executada em azul, não executada em magenta e proposição	em
vermelho) com divisão de bacias (em roxo) e sub-bacias (em verde	119
Figura 200 - PV´s sobre limites das bacias e áreas vazias	120
Figura 201 - temas presentes no Banco de dados	121

1. INTRODUÇÃO

Os principais impactos que decorrem do desenvolvimento de uma área urbana sobre os processos hidrológicos, estão ligados à forma de ocupação da terra, e também ao aumento das superfícies impermeáveis em grande parte das bacias que se localizam próximas a zonas de expansão urbana ou inseridas no perímetro urbano.

Desta forma, as bacias urbanas necessitam ser planejadas com seu desenvolvimento futuro levado em consideração. Contudo, a falta de planejamento adequado e as irregularidades na ocupação descontrolada tornam esta tarefa bastante dificultosa. Vale destacar que o desenvolvimento urbano brasileiro tem produzido aumento significativo na freqüência de inundações e que em determinadas áreas podese constatar um aumento das vazões em até 7 vezes.

Um dos maiores desafios do planejamento do uso da terra é o que se refere ao uso sustentável do ambiente que baseia-se em uma dinâmica de transformação com igual ênfase, nas dimensões ambientais e humanas da paisagem e na consideração de intervalo temporal que abranja diferentes gerações humanas. Desta forma, a utilização de produtos de sensoriamento remoto, tais como, imagens e fotografias aéreas, associadas aos SIG´s tornam-se de fundamental importância, pois, contribuem com a análise da dinâmica temporal da transformação de determinadas áreas tais como as bacias hidrográficas.

O monitoramento e a aquisição de dados contínuos proporcionam um controle sobre o comportamento das bacias hidrográficas. Desta forma, o conjunto de dados adquiridos requer ajustes constantes, e neste sentido os SIG´s e os produtos de Sensoriamento Remoto são importantes ferramentas nas análises e no auxílio do armazenamento e utilização de dados espaciais. Desta forma, as Geotecnologias, através dos Sistemas de Informação Geográficas (SIG´s) e do Sensoriamento Remoto vêm sendo utilizadas como importantes ferramentas, afim de subsidiar o planejamento, as análises e as ações em diversas áreas de aplicação do conhecimento.

Pesquisas na área de Geoprocessamento voltadas para Banco de Dados e Sistemas de Informações Geográficas (SIG) tiveram início na década de 60, variando em terminologia de acordo com a área de aplicação a que se destinavam. O volume de

informações manipuladas nestes sistemas é, normalmente, muito superior ao volume percebido em sistemas de informações convencionais. Como componentes responsáveis pelo armazenamento e recuperação de dados, a maioria dos SIG utiliza um Subsistema Gerenciador de Banco de Dados (SGBD) e um Subsistema de Cartografia Digitalizada. Um módulo coordenador do trabalho destes dois componentes implementa, também, a interface com o usuário.

O emprego de um SGBD oferece diversas vantagens, entre elas podemos citar: maior segurança no gerenciamento da base de dados, utilização de uma forma padrão para os programas de aplicação definir e manipularem os dados, redução de informações duplicadas, controle de acesso aos dados e garantia da consistência das informações, mesmo em caso de falhas do sistema computacional. A tendência identificada em centros de pesquisa assim como na indústria é de integrar, no Sistema Gerenciador de Banco de Dados (SGBD), os armazenamento e gerenciamento das informações cartográficas.

É neste sentido que este trabalho tem como objetivo específico analisar o crescimento urbano e os reflexos na macrodrenagem, utilizando-se do auxílio das geotecnologias na avaliação e espacialização das áreas urbanizadas. Vale ressaltar que este trabalho é parte integrante do Projeto Plano Diretor de Drenagem Urbana e Manejo de Águas Pluviais da Cidade do Natal – PDDMA, que tem como objetivo geral, gerar um banco de dados de parâmetros hidro – meteorológicos e do meio físico para estudo das bacias hidrográficas, como subsídio à elaboração do Plano Diretor de Drenagem do Município.

2. JUSTIFICATIVA

As diferentes ações do Plano Diretor de Drenagem Urbana e Manejo de Águas Pluviais da Cidade do Natal – PDDMA devem estar estruturadas por dados atualizados e confiáveis, com aplicações que facilitem sua utilização, possibilitando acesso compartilhado e compromisso mútuo dos diversos segmentos da Administração Municipal no sentido da manutenção de sua atualidade e confiabilidade.

A importância de um sistema cadastral é cada vez mais percebida na gestão de informações de sistemas de drenagens urbanas. Este sistema precisa ser adequado para atender a demandas do próprio cidadão, da Administração Municipal, e também de todas as outras entidades e instituições que gerenciam os recursos hídricos superficiais deste território. Considera-se primordial para a elaboração de um Plano de Drenagem Urbana (PDD) a construção de um sistema de gestão cadastral, ampliando assim a capacidade de registro em um só local de todas as informações inerentes ao PDDMA e também possibilitando as análises, modelamentos e elaboração de projetos, proporcionando um melhor planejamento administrativo das ações e também a gestão dos projetos a serem implantados.

A elaboração de uma base cartográfica digital, com precisão adequada à representação do ambiente urbano e a estruturação de um banco de dados geográfico e cadastral dos diversos aspectos da drenagem urbana, é uma condição capital para atender e suportar as demandas da Administração Municipal no que diz respeito ao planejamento e gestão de seus projetos de drenagem. Neste sentido, este relatório busca apresentar as ações e conceitos desenvolvidos visando estabelecer as condições para estruturação do Cadastro Técnico Multifinalitário (CTM) do Plano Diretor de Drenagem da cidade de Natal.

3. RELATÓRIO DO BANCO DE DADOS

3.1. Metodologia

A metodologia referente ao Banco de Dados consiste na estruturação em meio digital de toda a infra-estrutura existente da drenagem urbana, das zona Norte, Sul, Oeste e Leste da cidade do Natal (bocas-de-lobo, poços de visita, etc.) da base elaborada em CAD (*Computer Aided Design*) para SIG (*Sistema de Informações Geográficas*), utilizando para tal operação o *software* ArcGis v. 9.2. bem como o armazenamento e "reordenação" dos atributos em plataforma SIG. Além de associação

de mapas temáticos elaborados pelas equipes responsáveis pelos Estudos do Plano Diretor de drenagem e Manejo de Águas pluviais do Município de Natal.

Segundo a metodologia proposta no Plano de trabalho do PDDMA, os objetivos deste trabalho eram os seguintes:

3.1.1. Objetivo Geral

- Geração e uso de um Sistema de Gerenciamento de Dados de Drenagens (SGDD) com cadastro detalhado de todo o sistema de drenagem urbana da cidade de Natal, apoiado por cartografia digital atualizada e georeferenciada; e
- Elaborar um Sistema de Informações Georeferenciadas (SIG) que permita medir, analisar, diagnosticar e cadastrar os diversos segmentos do sistema de drenagem de Natal, que envolve mais de 2 mil quilômetros de redes de pequeno diâmetro, bocas-de-lobo, e poços de visita, vários rios e córregos canalizados, lagoas, etc.

3.1.2. Objetivos Específicos

- Levantamento e identificação dos elementos envolvidos em aplicações de geoprocessamento, relacionados com problemas ambientais e de planejamento da drenagem urbana, ou seja, identificar as entidades da realidade que necessitam ser capturadas e armazenadas para possibilitar as análises geográficas e, conseqüentemente, dar maior embasamento nas tomadas de decisão; e
- Aplicação de técnicas de modelagem de sistemas de informação, que são empregadas atualmente na modelagem de aplicações não-geográficas, para modelar as aplicações dos projetos-piloto. Pretende-se com isso, medir o grau de adequação de tais técnicas e dos modelos de dados a elas subjacentes na modelagem de aplicações geográficas em ambientes multidisciplinares. Organização e estruturação das informações e dados deste cadastro, georeferenciados no software ArcGis v. 9.2,

visando a concepção de um banco de dados georeferenciado para que estas informações possam ser consultadas, visualizadas, atualizadas e manipuladas.

3.2. Etapas Metodológicas estabelecidas no Plano de trabalho do PDDMA

Fase I

- Levantamento do acervo bibliográfico, geocartográfico, documentário e de informações disponíveis em organismos e instituições sobre a área de estudo com relação direta com o PDDMA;
 - Seleção e aquisição de fotos aéreas e imagens de satélite; e
- Preparação da cartografia básica a ser elaborada, através de um SIG,
 contendo as principais informações planialtimétricas na escala 1:25.000;

Fase II

- Geração do cadastro detalhado de todas as obras e feições de infra-instrutura existentes da drenagem urbana de Natal (bocas-de-lobo, e poços de visita, rios e córregos canalizados, lagoas, etc.) e plotagem das cartas temáticas para procedimento de auditoria cartográfica; e
- Organização e estruturação das informações e dados deste cadastro, georreferenciados no GIS ARCVIEW, visando a concepção de um banco de dados para que estas informações possam ser consultadas, visualizadas, atualizadas e manipuladas.

Fase III

 Atualização cartográfica de aspectos físicos e ambientais através do processamento, interpretação e análise digital dos produtos de sensoriamento remoto (imagens multiespectrais de satélite) tendo em vista o mapeamento das informações com o estabelecimento de mapas temáticos (geologia, geomorfologia, unidades ambientais, uso e ocupação, áreas vazias) na escala 1:50.000;

- Elaboração de mapas socioeconômicos do município tendo como base o censo 2000 (atualizado 2004) e a divisão de bairros de Natal, proporcionando o cruzamento de dados de saneamento, abastecimento de água, população, escolaridade, etc. com os dados do PDD;
- Levantamento de campo para fins de reconhecimento da verdade terrestre sob o ponto de vista dos recursos naturais e checagem das informações obtidas a partir das imagens de satélite para que possam ser geoprocessadas; e
- Elaboração de acervo fotográfico, por ocasião das visitas de campo, que será entregue juntamente com as informações digitais.

Fase IV

- Georeferenciamento da Base Topográfica e da Planta Cadastral da cidade de Natal (base já existente em órgãos do município) e atualização sobre imagens de satélite;
- Preparação da cartografia básica a ser elaborada, através de um SIG, contendo as principais informações planialtimétricas na escala 1:25.000;
- Estudos e analise integrada do sistema de drenagens, caracterização das bacias elementares, cadastro do sistema de macro drenagem, caracterização estrutural do sistema de macro drenagem, cadastro do sistema de micro drenagem, etc; e
- Implantação dos indicadores ponderados para bacias hidrográficas envolvendo o geoprocessamento de dados primários, relacionamento e consolidação das tabelas em banco de dados, exportação e manipulação das planilhas no Excel para efeito do cálculo dos indicadores para publicação, reexportação dos indicadores para o banco de dados e geração dos mapas temáticos para publicação

Fase V

 Criação e Implantação de um Sistema de Informações Geográficas (SIG) que permita o modelamento de obras e do escoamento, delimitação de áreas inundáveis e a definição de áreas de Bacias de Detenção; e

• Reestruturação do banco de dados atual para comportar as análises sobre o novo conjunto de variáveis estabelecidas pelas equipes do PDD e pré-projetos de drenagem urbana.

3.3. Análise dos Resultados

Observação: As figuras correspondentes ao SIG são captura de telas do sistema SIG DRENAGEM feitas diretamente na tela do computador onde se encontra armazenado o Sistema do Banco de Dados, demonstrando assim as suas facilidades em termos de visualização para o modelamento do Plano de Denagens e também o quantitativo do progresso do banco de dados, podendo-se avaliar em que estágio se encontra seu desenvolvimento.

4. ELABORAÇÃO DO BANCO DE DADOS

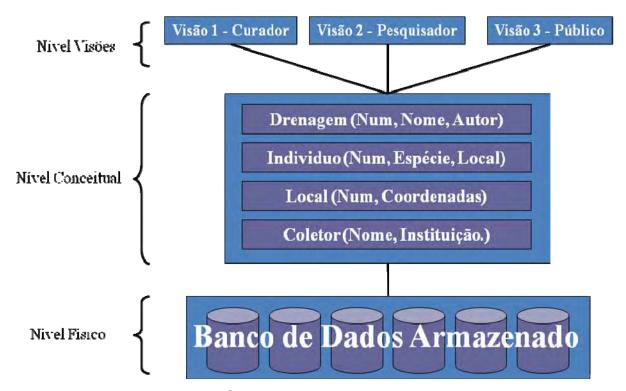


Figura 01 – Modelo Conceitual do Banco de dados deste projeto

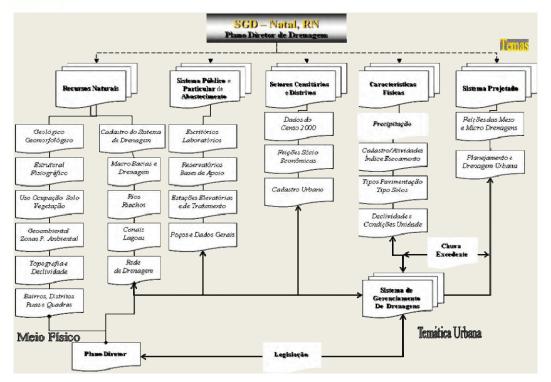


Figura 02 – Fluxograma da Estrutura de Informações do Banco de dados deste projeto

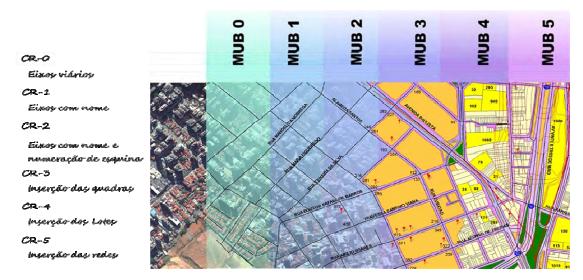


Figura 03 – Nível de Informação que está sendo trabalhado neste banco de dados. Será utilizado o maior nível que é o MURB - 5 que contém informações a nível de detalhe sobre Eixos viários com nome e numeração de esquina, Inserção das quadras, Inserção dos Lotes e Inserção das redes (no caso, os atributos da Rede de Drenagem).

5. MAPAS TEMÁTICOS

Um dos objetivos desta atividade é elaborar a consolidação dos diversos estudos e serviços executados pelos coordenadores setoriais nas tarefas de DIAGNÓSTICO e PREPOSIÇÕES de maneira a se produzir um documento onde estejam encartados todos os relatórios concebidos nestas duas tarefas. Ou seja, é o momento em que todas as equipes (i) Estudos hidrológicos; (ii) Estudos urbanísticos; (iii) Estudos socioeconômicos; (iv) Estudos ambientais; (v) Estudos hidrogeológicos; e (vi) Estudos de saneamento básico; completam os mapas produzidos e estes são inserido no banco de Dados (BD), também completam o Banco de dados as medidas estruturais propostas nesse Plano Diretor de Drenagem e Manejo de águas .

Esta etapa envolve também modelagens do sistema SIG para avaliações dos planos propostos e avaliações das conseqüências de sua implantação, testes de avaliação do Sistema e instalação do SIG com respectivo banco de dados na SEMOPI. Envolve também uma fase de treinamento dos técnicos da SEMOPI na operação do SIG e do seu Banco de Dados.

Segue abaixo a captura de telas paras os citados Mapas temáticos presentes no Banco de dados.

5.1. Estudos Hidrológicos

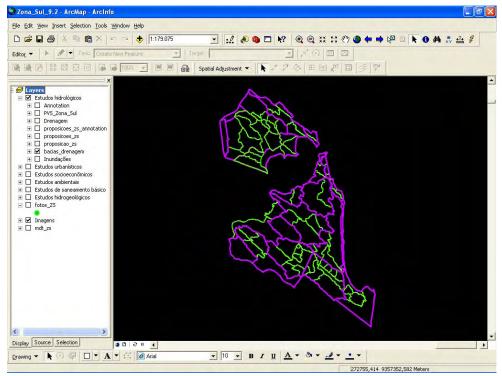


Figura 04 – Mapas das bacias de drenagem (roxo) e sub-bacias de drenagem (verde)

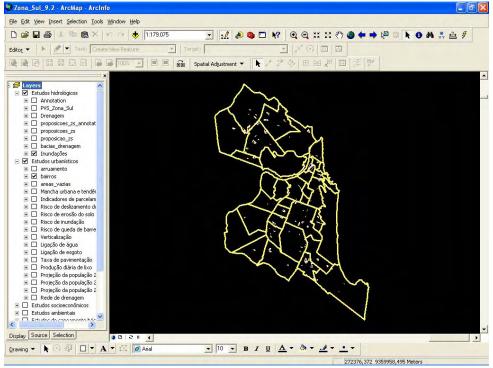


Figura 05 - Mapas dos pontos de inundação

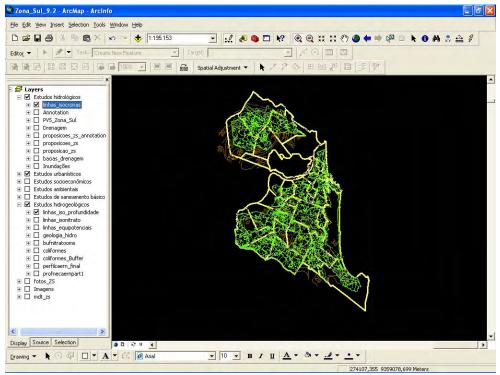


Figura 06 - Mapas das isócronas das sub-bacias

5.2. Estudos Urbanísiticos

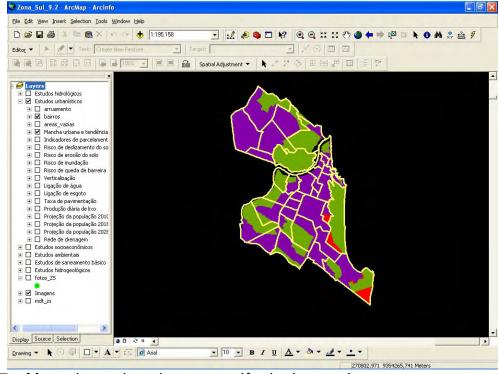


Figura 07 – Mapa da macha urbana e tendência de crescimento

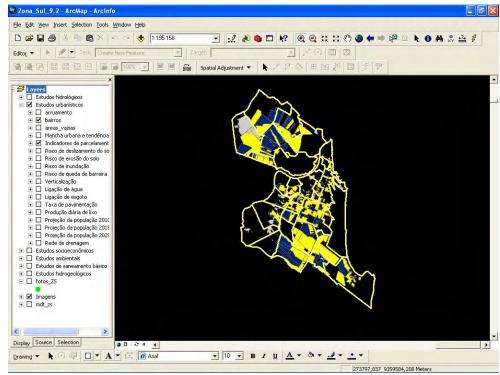


Figura 08 - Mapa de indicadoes de parcelamento do solo

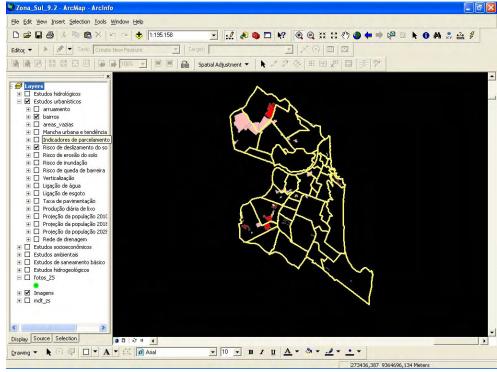


Figura 09 – Mapa do risco de deslizamento do solo



Figura 10 - Mapa do risco de erosão do solo

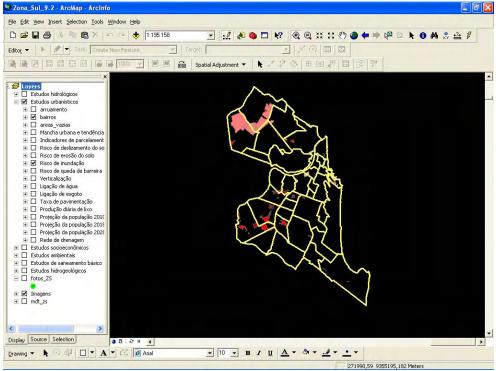


Figura 11 - Mapa do risco de inundação

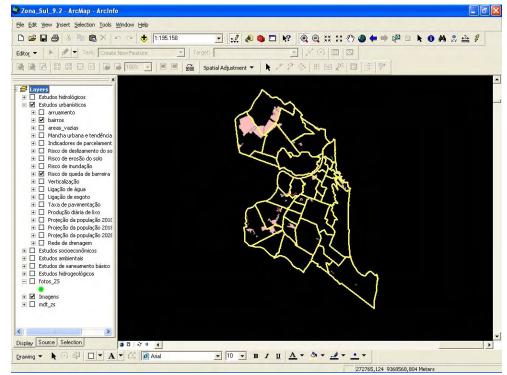


Figura 12 - Mapa do risco de queda de barreira

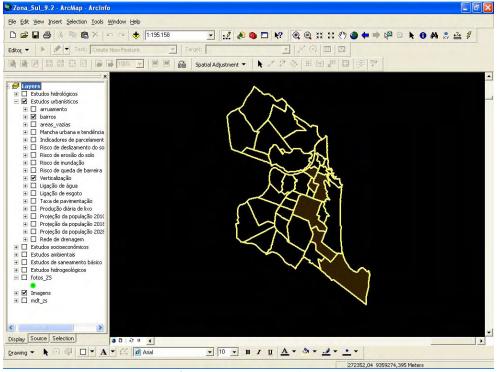


Figura 13 - Mapa de presença de forte verticalização por bairro

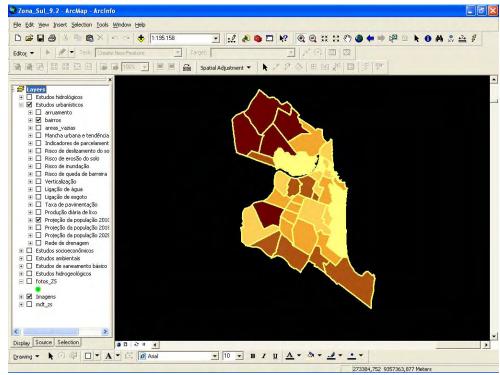


Figura 14 - Mapa de projeção da população para 2010 por bairro

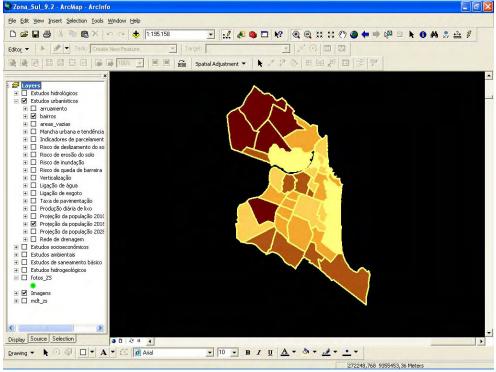


Figura 15 - Mapa da projeção da população para 2018 por bairro

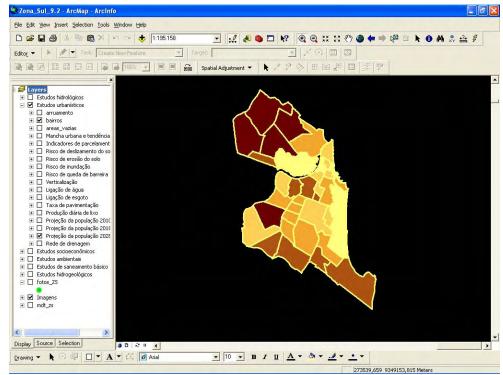


Figura 16 - Mapa da projeção da população para 2028 por bairro

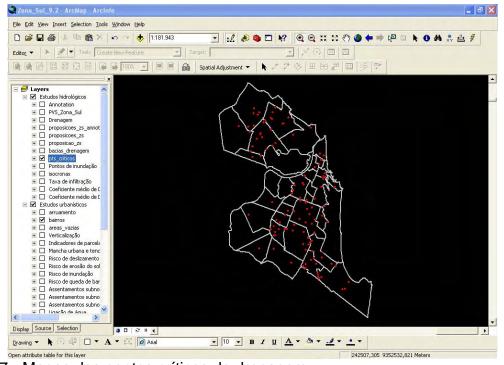


Figura 17 - Mapas dos pontos críticos de drenagem

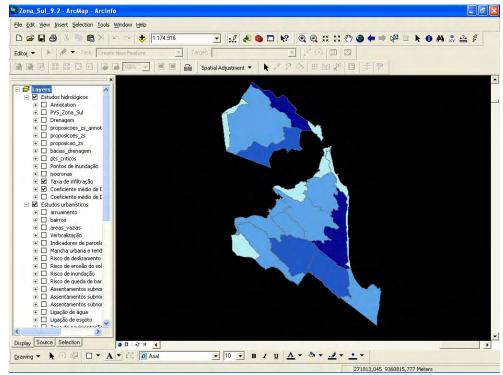


Figura 18 – Mapa da taxa de infiltração por bacia de drenagem

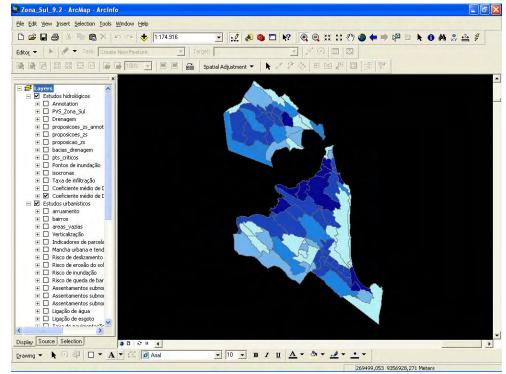


Figura 19 – Mapa do coefiente de deflúvio por sub-bacia de drenagem

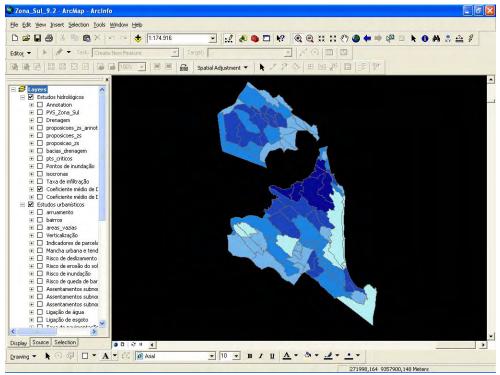


Figura 20 – Mapa do coeficiente de deflúvio de sub-bacia de drenagem

5.3. Estudos Socioeconômicos

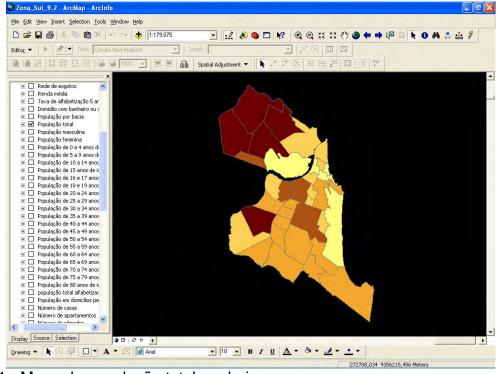


Figura 21 - Mapa da população total por bairro

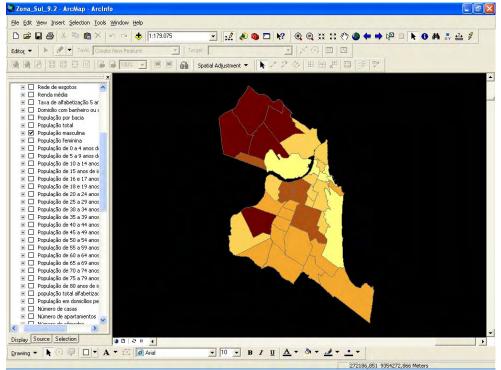


Figura 22 - Mapa da população total masculina por bairro

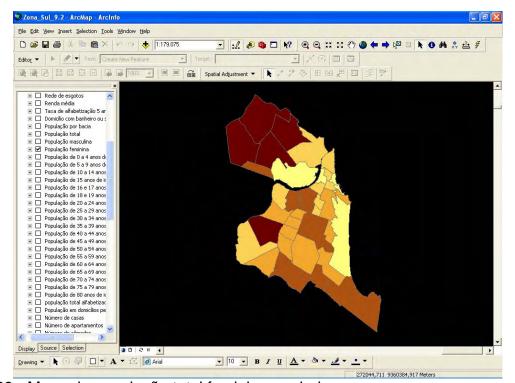


Figura 23 - Mapa da população total feminina por bairro

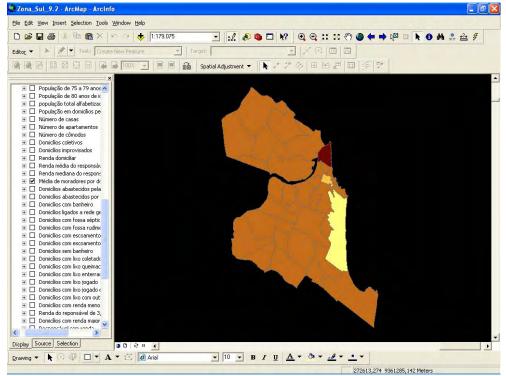


Figura 24 - Mapa da média de moradores por domicílio por bairro

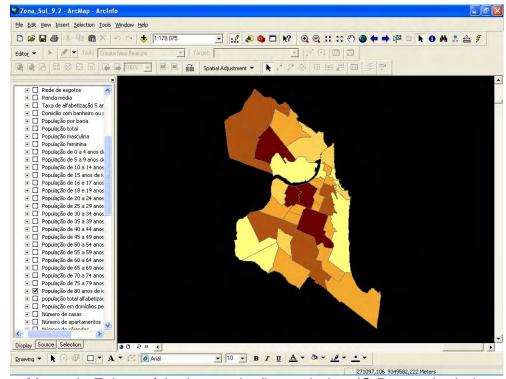


Figura 25 - Mapa de Faixa etária da população por bairro (O Banco de dados apresenta mapas de faixa etária para intervalos de 5 anos de idade)

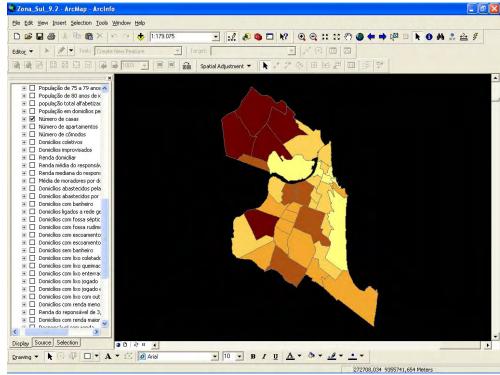


Figura 26 - Mapa de número de casas por bairro

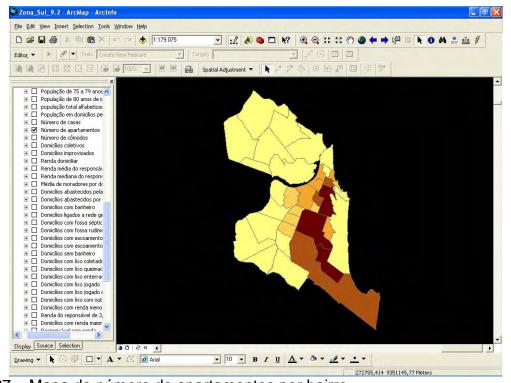


Figura 27 – Mapa do número de apartamentos por bairro

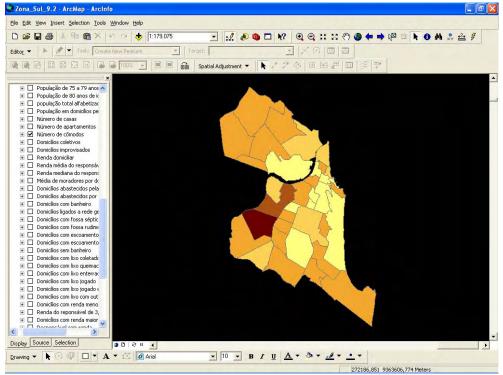


Figura 28 - Mapa do número de cômodos por bairro

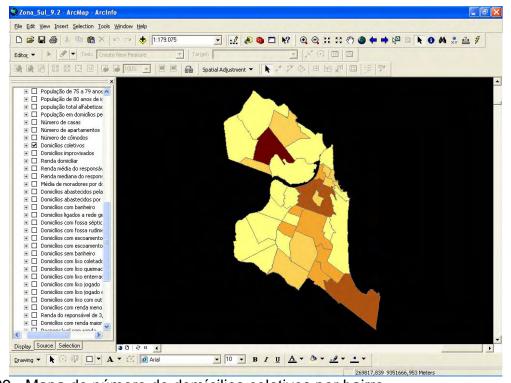


Figura 29 - Mapa do número de domícilios coletivos por bairro

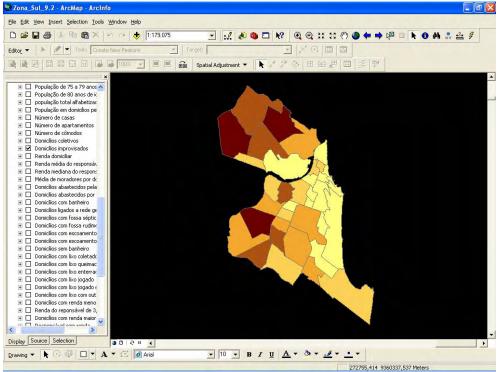


Figura 30 - Mapa do número de domicílios improvisados por bairro

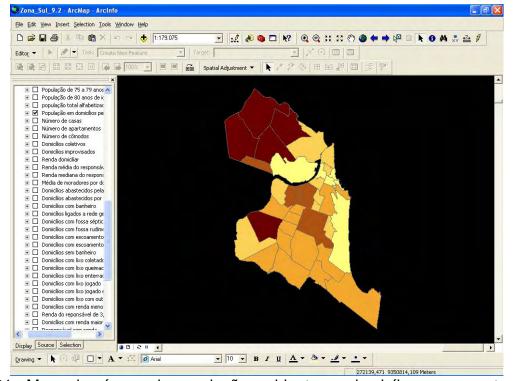


Figura 31 - Mapa do número da população residente em domicílos permanentes por bairro

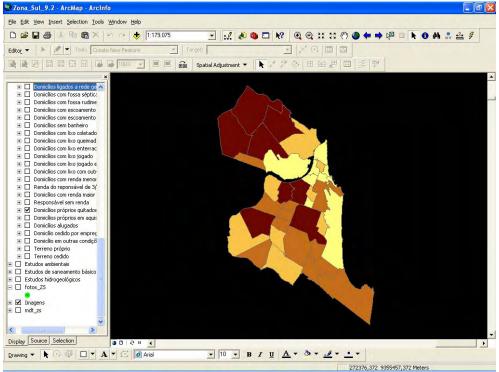


Figura 32 - Mapa do número de domicílos próprios quitados por bairro

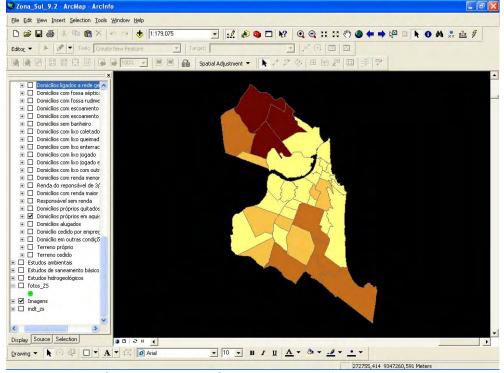


Figura 33 – Mapa do número de domicílios em aquisição por bairro

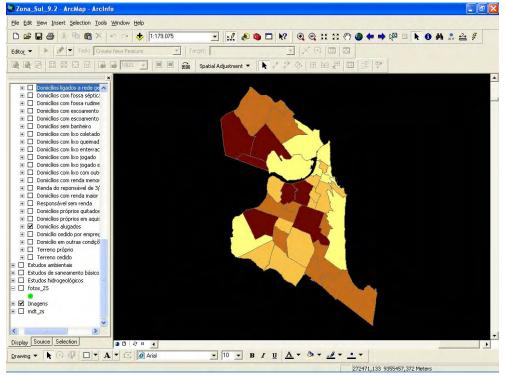


Figura 34 – Mapa do número de domicílios alugados por bairro

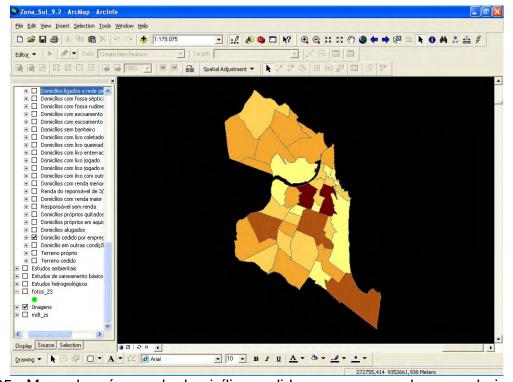


Figura 35 - Mapa do número de domicílios cedidos por empregadores por bairro

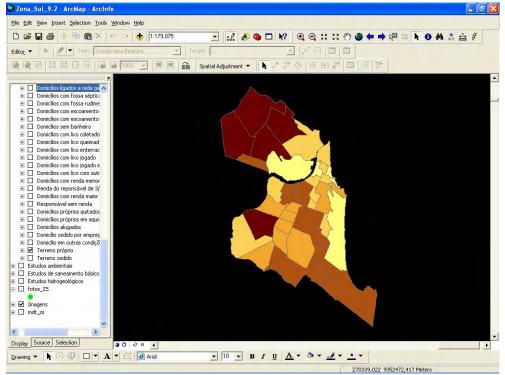


Figura 36 - Mapa do número de terrenos próprios por bairro

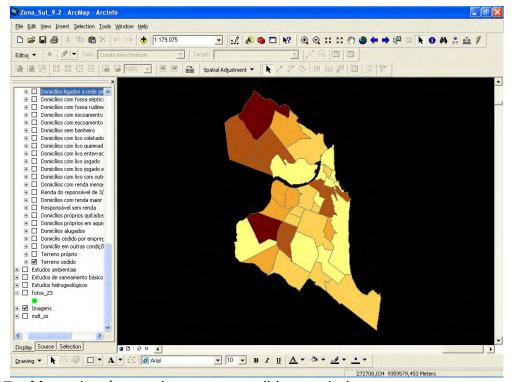


Figura 37 – Mapa do número de terrenos cedidos por bairro

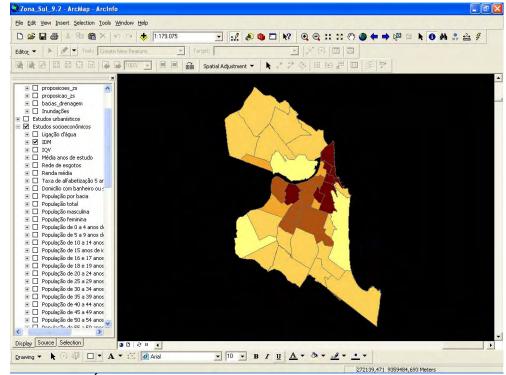


Figura 38 - Mapa do Índice de Desenvolvimento de Domicílios (IDM) por bairro

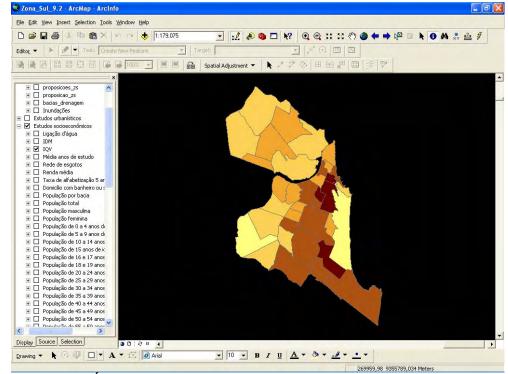


Figura 39 - Mapa do Índice de Qualidade de Vida (IDV) da população por bairro

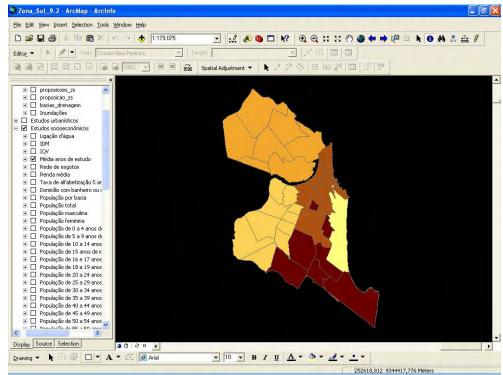


Figura 40 - Mapa da média de anos de estudo da população por bairro

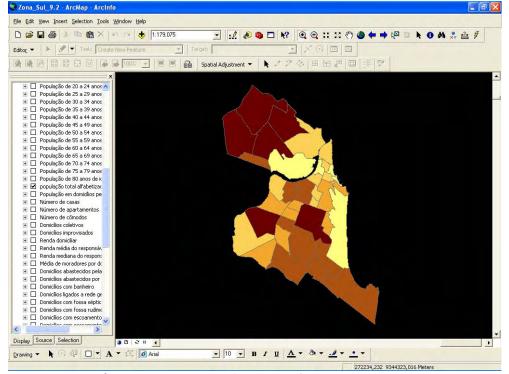


Figura 41 - Mapa do número da população total alfabetizada por bairro

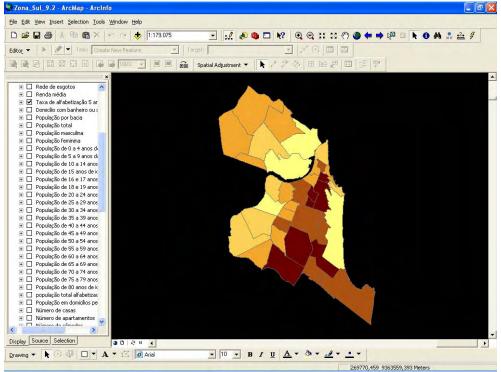


Figura 42 - Taxa de alfabetização da população de 5 ou mais anos por bairro

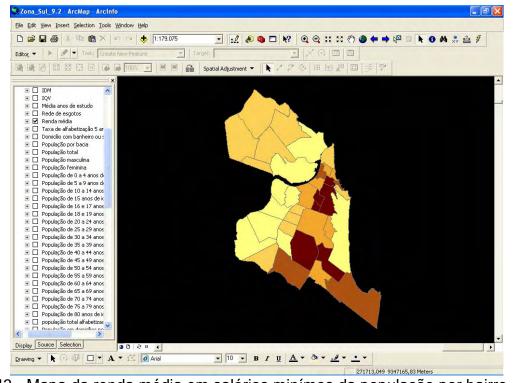


Figura 43 - Mapa da renda média em salários minímos da população por bairro

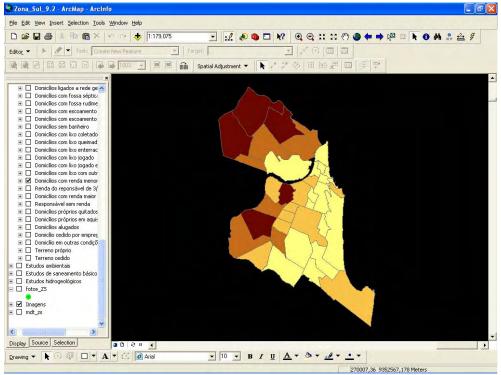


Figura 44 - Mapa do número de domicílios com renda menor que 0,25 salários mínimos

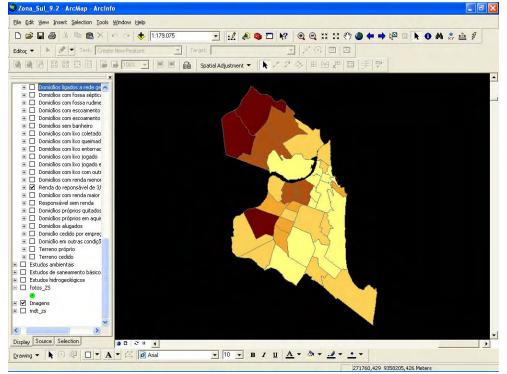


Figura 45 - Mapa do número de domicílios com renda entre 3/4 e 1 salário minímos

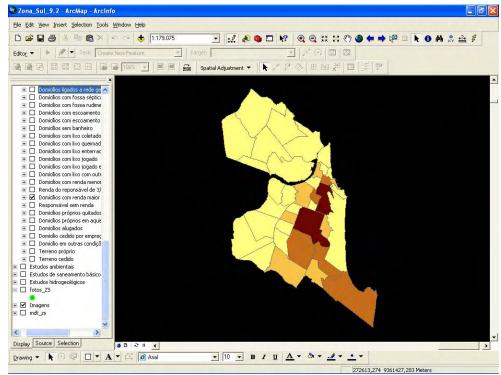


Figura 46 - Mapa do número de domicílos com renda superior a 30 salários minímos

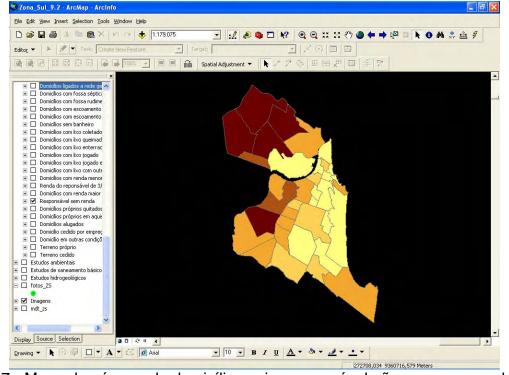


Figura 47 - Mapa do número de domicílios cujo responsável não possuem renda

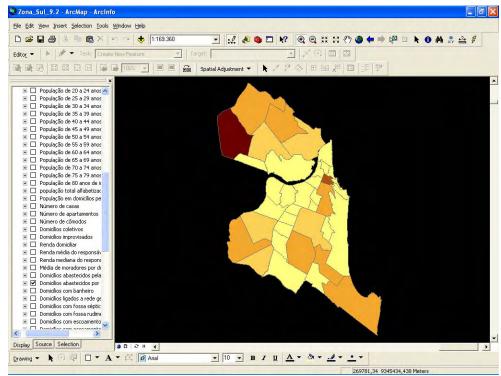


Figura 48 - Mapa do número de domícilios abastecidos por poço ou nascente por bairro

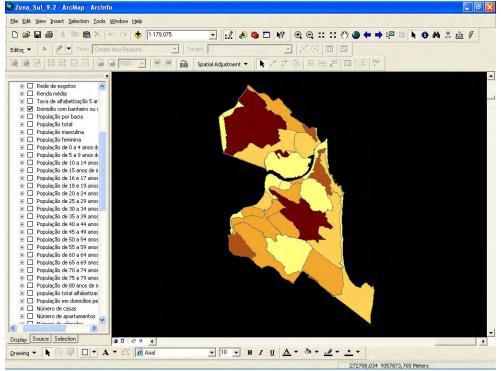


Figura 49 - Mapa do número de domicílios com banheiro ou sanitário por bacia

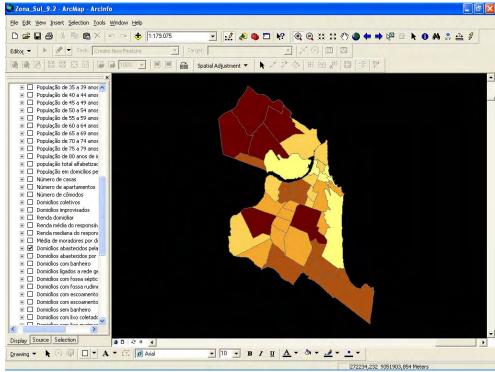


Figura 50 – Mapa do número de domicílios abastecidos pela rede de água por bairro

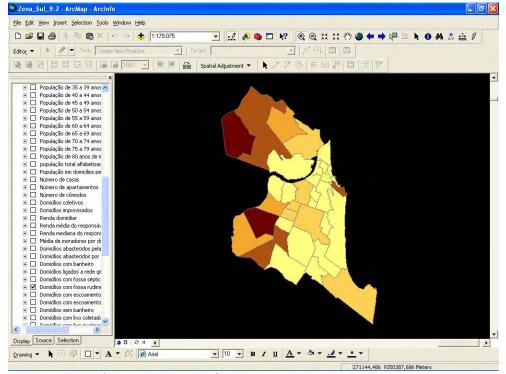


Figura 51 - Mapa do número de domicílios que possuem fossa rudimentar

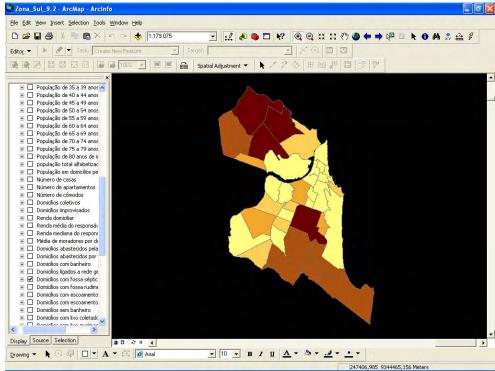


Figura 52 - Mapa do número de domicílios que possuem fossa séptica

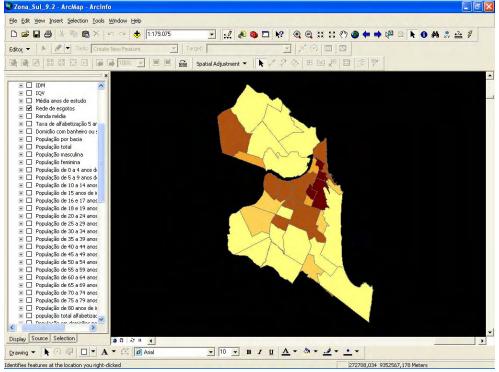


Figura 53 - Mapa de porcentagem de atendimento por rede de esgoto por bairro

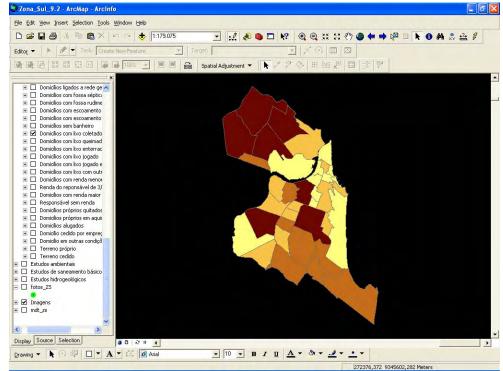


Figura 54 - Mapa do número de domicílios atendidos pela coleta de lixo

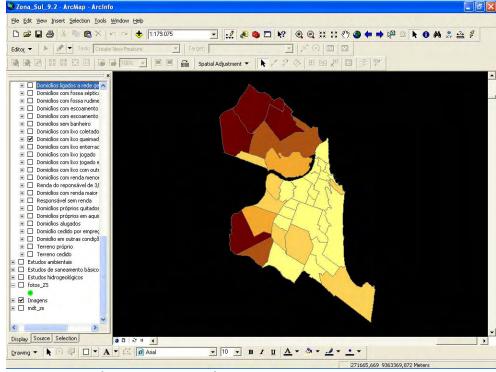


Figura 55 - Mapa do número de domicílios com lixo incinerado

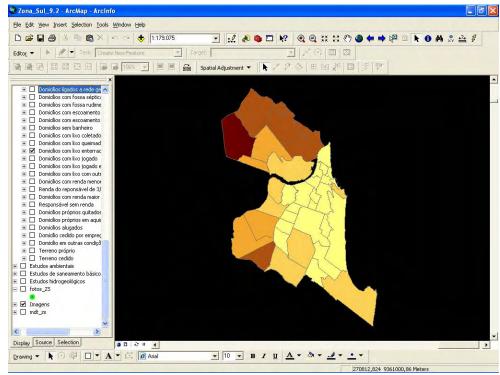


Figura 56 - Mapa do número de domicílios com lixo enterrado

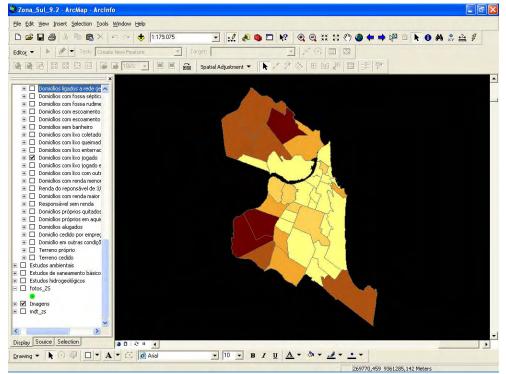


Figura 57 - Mapa do número de domicílios dispostos pelo lançamento a céu aberto

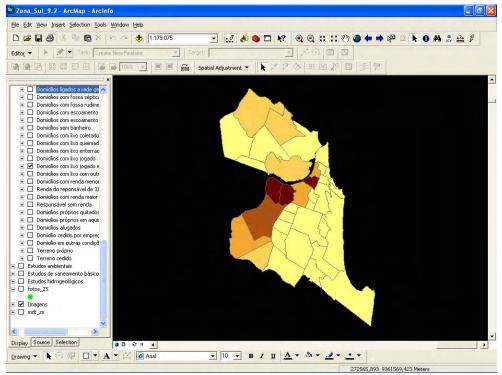


Figura 58 – Mapa do número de domicílios dispostos pelo lançamento em rios

5.4. Estudos Ambientais

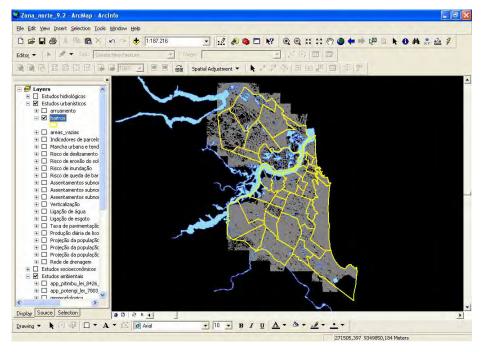


Figura 59 - Mapas de Hipsometria e de Recursos Hídricos, adquiridos, georeferenciados e inseridos no banco de Dados.

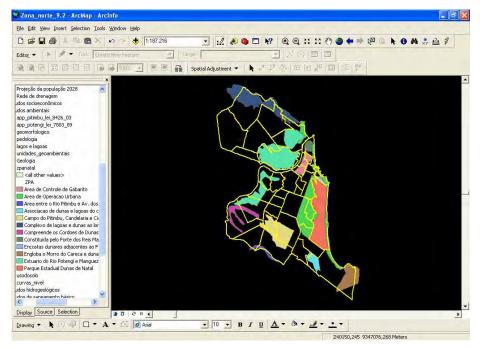


Figura 60 - Zonas de proteção ambiental e limites de bairros

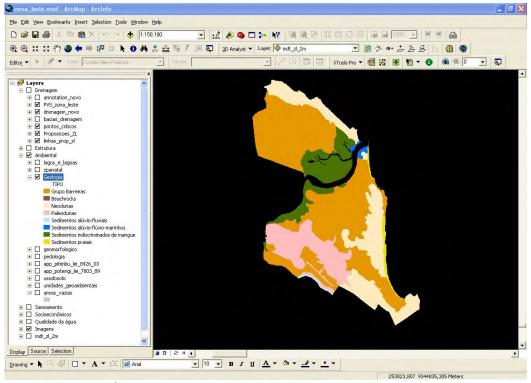


Figura 61 - Mapa geológico da cidade de Natal

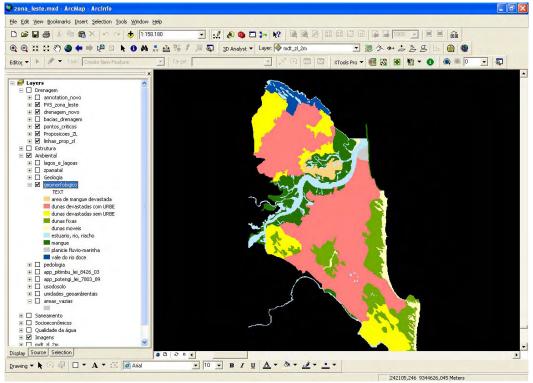


Figura 62 - Mapa geomorfológico da cidade de Natal

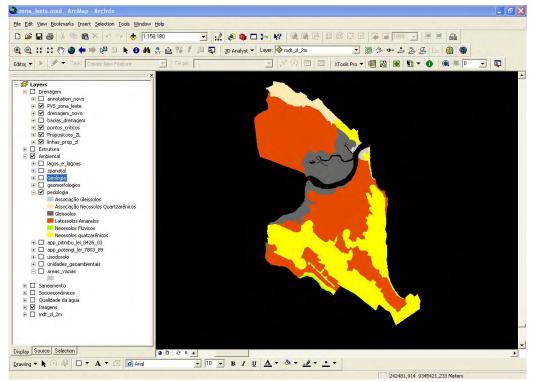


Figura 63 - Mapa pedológico da cidade de Natal

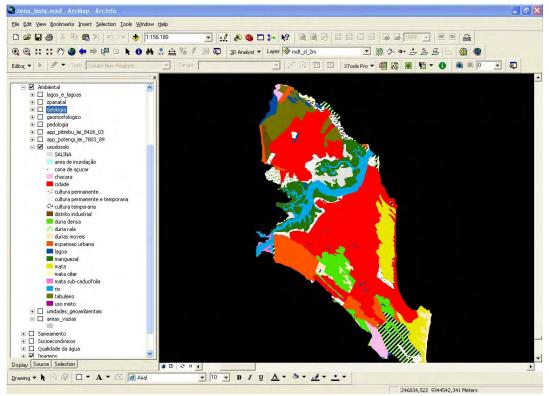


Figura 64 - Mapa de Uso e ocupação do solo da cidade de Natal

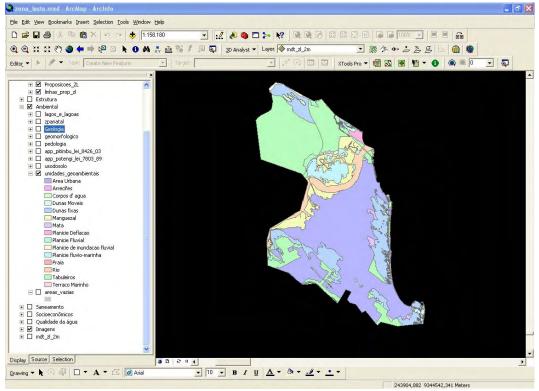


Figura 65 - Mapa de unidades geoambientais

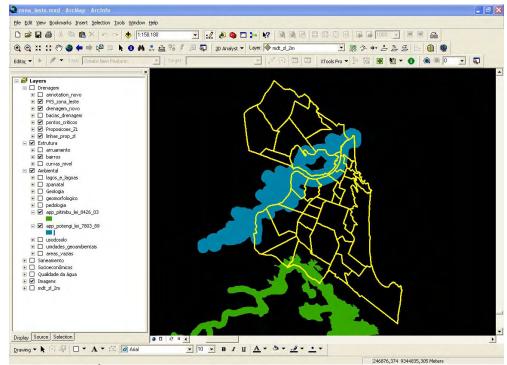


Figura 66 - Mapa de Áreas de Preservação Permanente (APP Pitimbú lei 8426/03 e APP Potengí lei 7803/89)

5.5. Estudos Hidrogeológicos

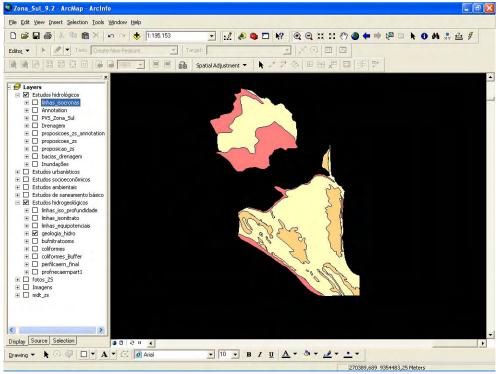


Figura 67 – Mapa geológico (Hidrogeologia)

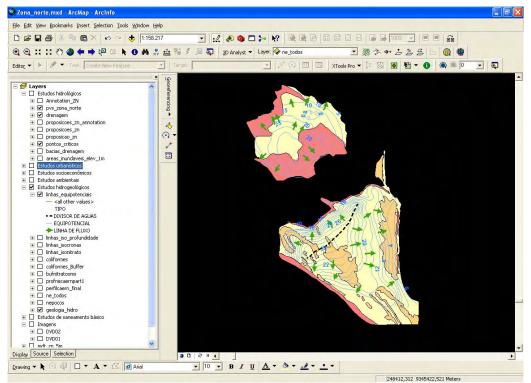


Figura 68 - Mapa de linhas equipotenciais

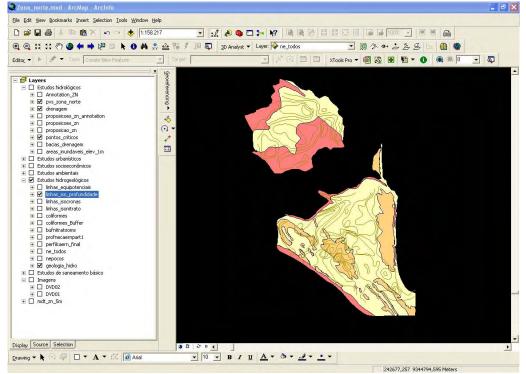


Figura 69 - Mapa de linhas de isoprofundidade

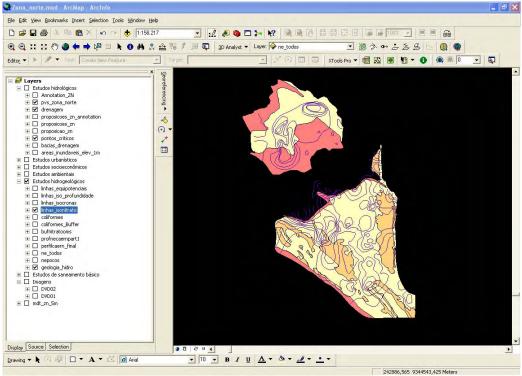


Figura 70 - Mapa de linhas de isonitrato

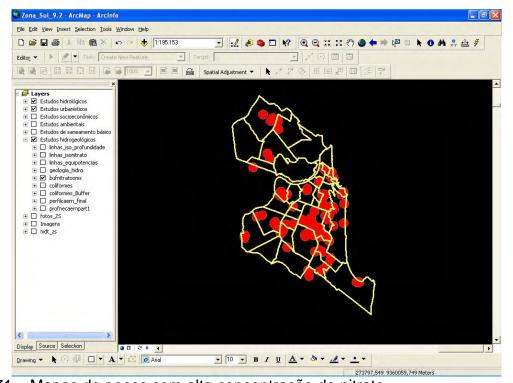


Figura 71 – Mapas de poços com alta concentração de nitrato

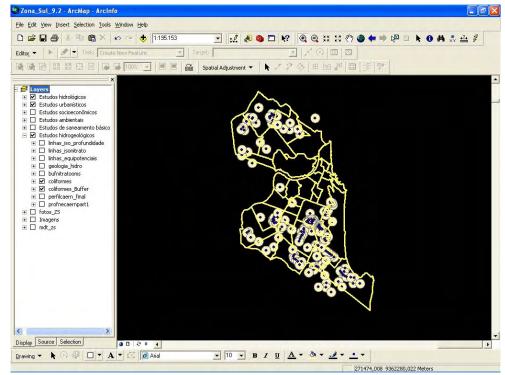


Figura 72 - Mapas com alta concentração de coliformes fecais

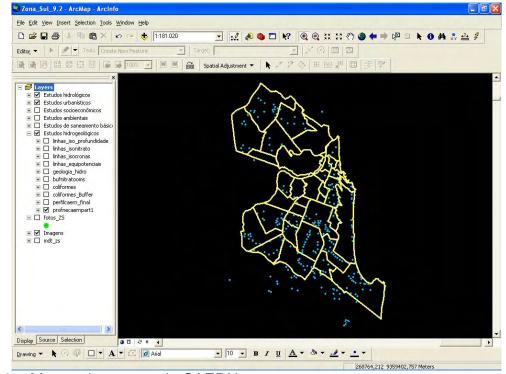


Figura 73 – Mapas dos poços da CAERN

5.6. Estudos de Saneamento básico

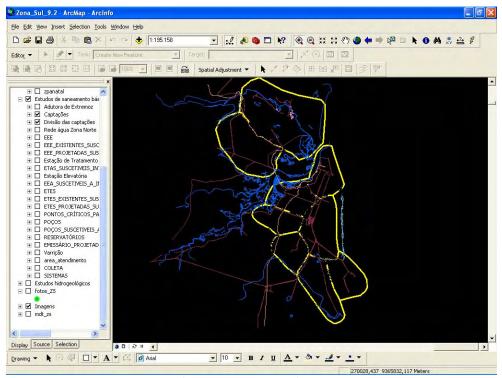


Figura 74 - Mapas com as captações e suas divisões

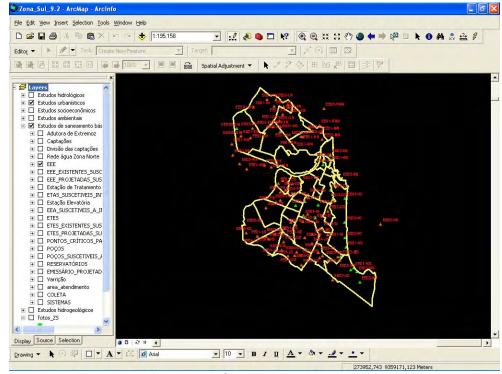


Figura 76 - Mapas das Estações elevatórias de esgoto existentes e projetadas

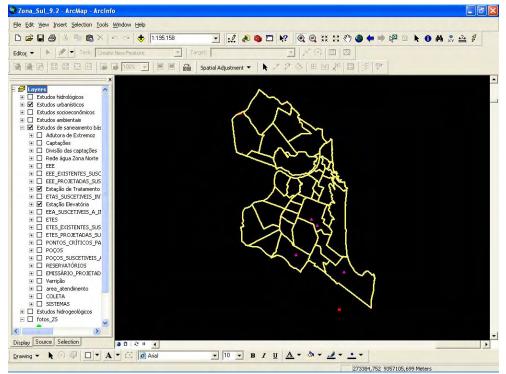


Figura 76 - Mapas das estações de tratamento e estações elevatórias de abastecimento de água

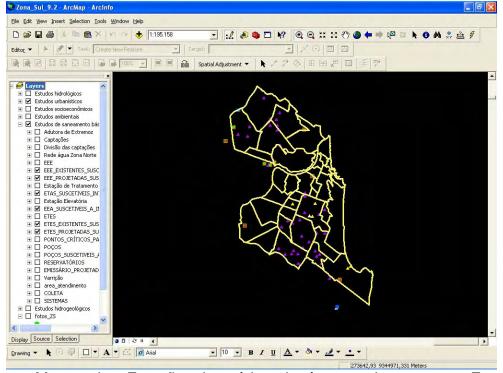


Figura 77 - Mapas das Estação elevatórias de água e de esgoto e Estações de tratamento de água e de esgotos suscetíveis a interferência no sistema de drenagem

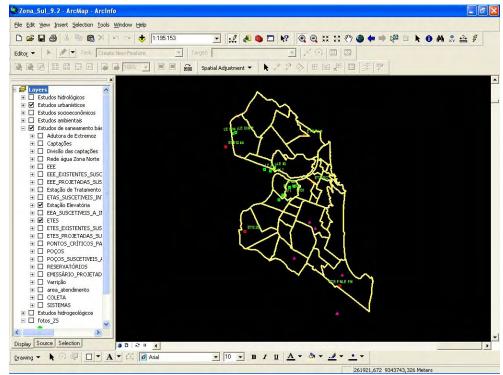


Figura 78 - Mapa das Estações de tratamento de água e de esgoto

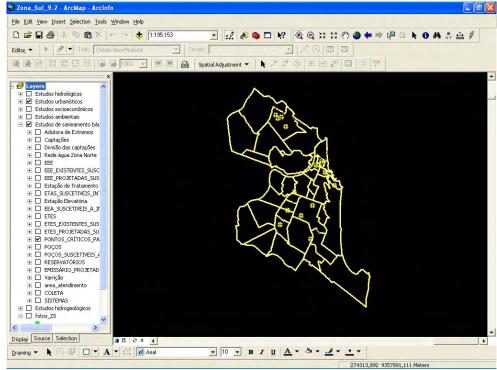


Figura 79 - Mapa dos pontos críticos do sistema de drenagem

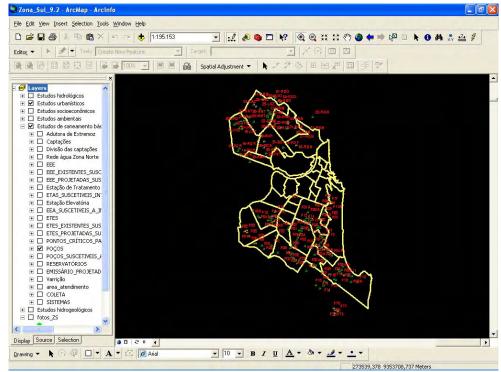


Figura 80 - Mapa dos poços para abastecimento de água

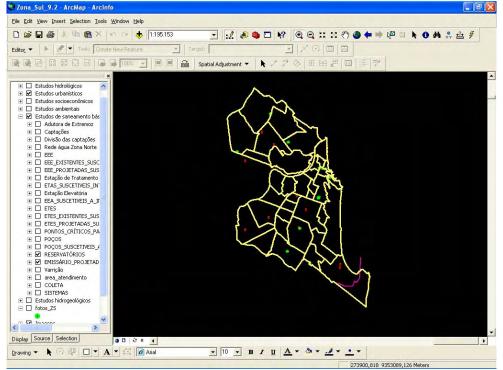


Figura 81 - Mapa dos reservatórios de abastecimento de água e emissário de águas pluviais

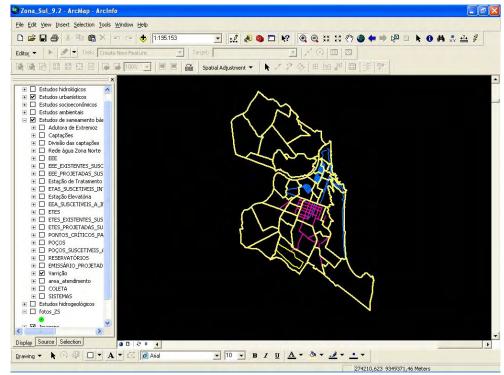


Figura 82 – Mapa da frequência de varrição

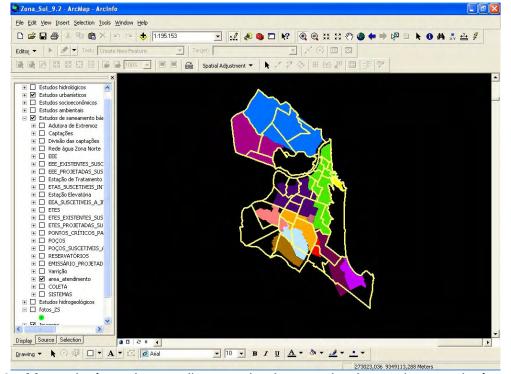


Figura 83 - Mapa de área de atendimento do sistema de abastecimento de água

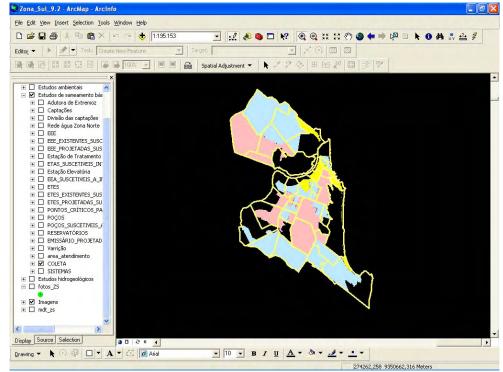


Figura 84 - Mapa da frequência de atendimento da coleta de lixo

6. LEVANTAMENTO CADASTRAL DA REDE DE DRENAGEM E OUTRAS INFORMAÇÕES DO BANCO DE DADOS

Cadastramento das Imagens de satélite adquiridas e tratadas neste projeto.

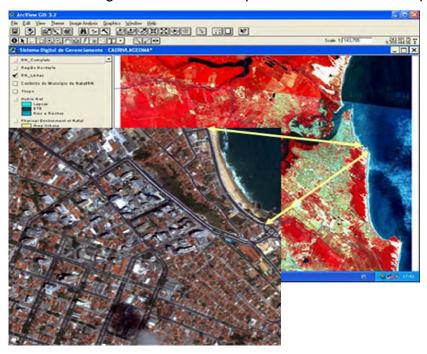


Figura 85 - Imagens dos satélites Spot e Ikonos com detalhes da área do município de Natal. Estas imagens foram adquiridas e georeferenciadas e se encontram já inseridas no Banco de Dados

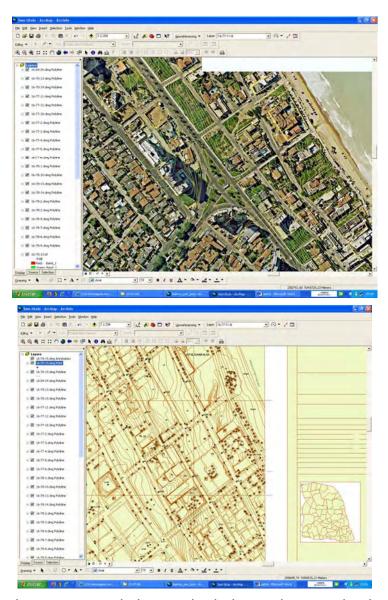


Figura 86 – Vista de um recorte do banco de dados onde se pode observar na imagem superior a foto aérea georeferenciada com o overlay das curvas de nível sobre esta. Na outra imagem inferior temos um recorte mostrando o nível de detalhe (Nivel MURB – 5) com ruas, quadras, lotes, edificações e curvas de nível

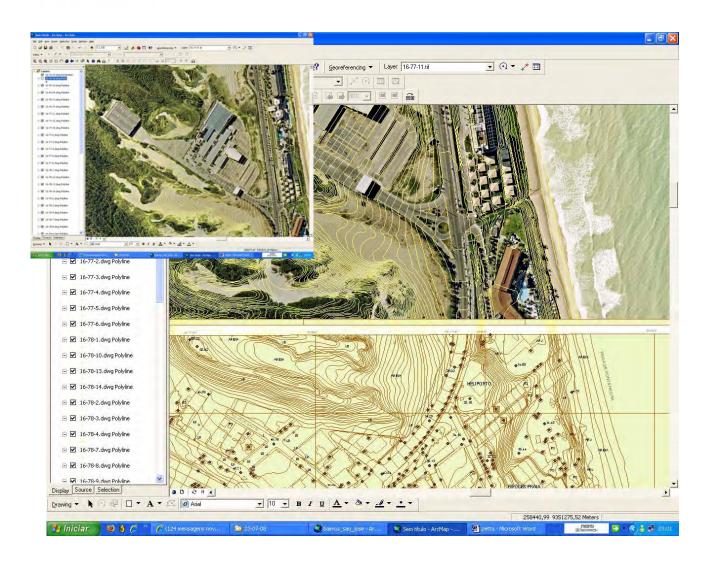


Figura 87 - Vista de um recorte do banco de dados da área do Centro de Convenções da Via Costeira, onde se pode notar a composição de três níveis de informação: (i) foto aérea georeferenciada com o overlay das curvas de nível, (ii) Recorte mostrando o nível de detalhe (Nivel MURB – 5) com ruas, quadras, lotes, edificações e curvas de nível, e (iii) Detalhe da área do Centro de Convenções.

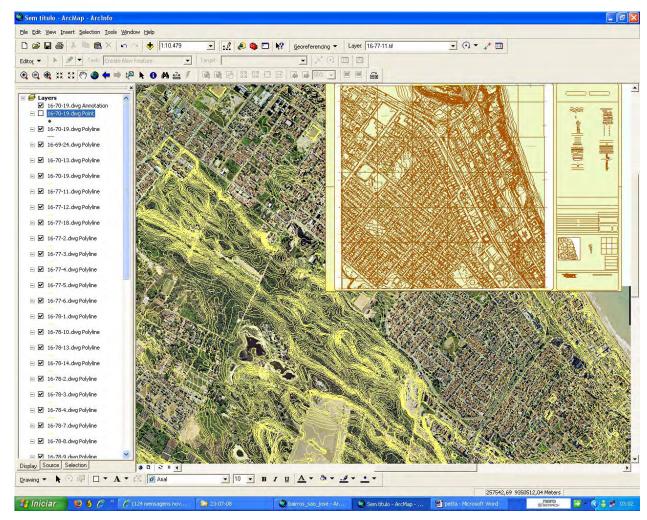


Figura 88 - Vista de um recorte do banco de dados da área da Lagoinha (Ponta Negra), onde se pode observar a composição de vários níveis de informação como a foto aérea georeferenciada com o overlay das curvas de nível, e detalhes das ruas, quadras, lotes, edificações e curvas de nível, e em destaque a área do Conjunto Ponta Negra com seus atributos contidos no Banco de Dados.

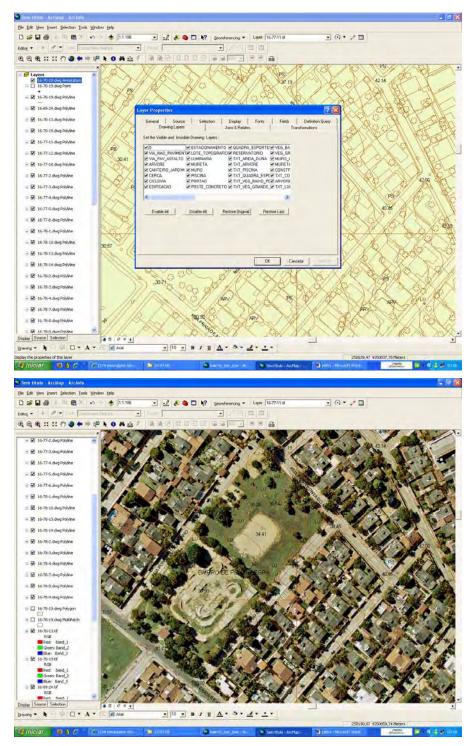


Figura 89 – Demonstrativo dos Níveis de Informação do banco de dados, com destaque na imagem superior das possibilidades de habilitar ou desabilitar os níveis de informação a serem visualizadas no SIG.

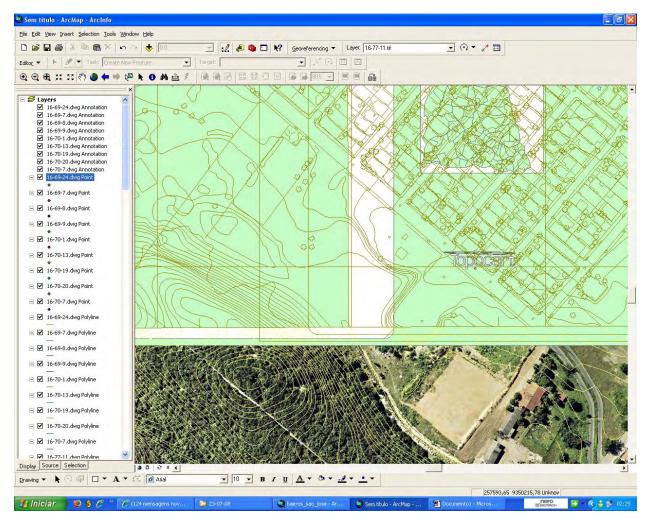


Figura 90 – Recorte do banco de dados apresentando a analise da altimetria da área do Centro de tradições gauchas (Ponta Negra) e detalhes da carta digitalizada do Conjunto Ponta Negra.

Atualização do Sistema ARCGIS e estruturação do banco de dados contendo as informações e análise integrada do sistema de ruas, quadras, lotes e edificações, cadastro do sistema de macro drenagem, caracterização estrutural do sistema de macro drenagem.

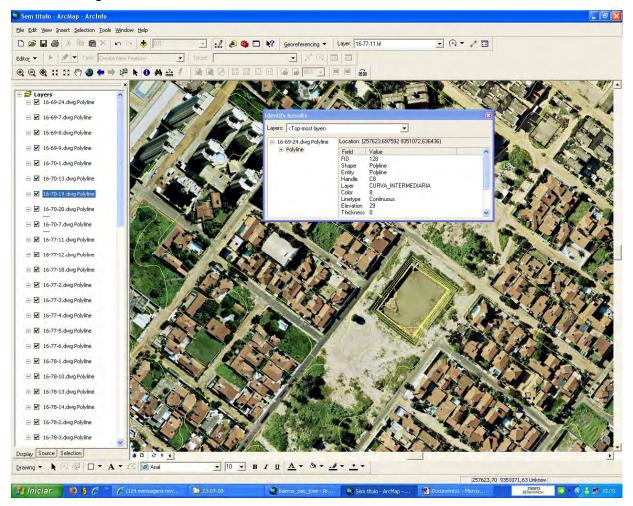


Figura 91 – Recorte do banco de dados apresentando uma consulta sobre a altimetria de uma lagoa de estabilização localizada próxima do Shopping Praia Mar (Ponta Negra).

 ■ 16-70-10 dag Polykou

 ■ 16-70-11 dag Polykou

 ■ 16-70-11 dag Polykou

"Nossa missão é servir com excelência, ética e eficiência, contando com servidores competentes e valorizados, primando todos pelo respeito ao cidadão e ao meio ambiente, contribuindo para fazer de Natal uma cidade cada vez mais humana, socialmente mais justa, solidária e sustentável, com a melhor qualidade de vida para toda a população".

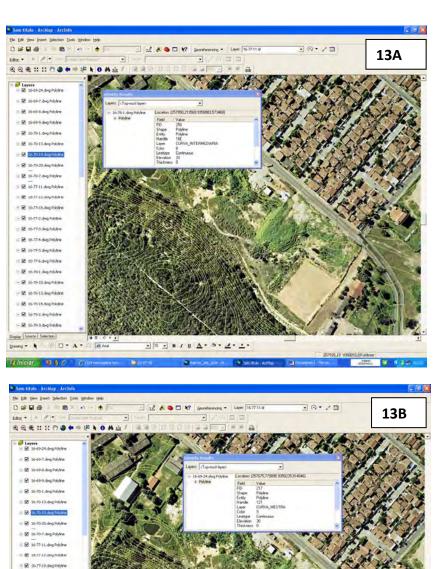


Figura 92A e 92B - Recorte do banco de dados da área da Lagoa do Centro de Tradições Gauchas (CTG - Ponta Negra), onde foi realizada uma consulta no Banco de dados para se conhecer a cota (altimetria) da área do CTG (33m) para avaliação da área a ser atingida em caso de inundação da lagoa ao lado, de cota 30m (imagem 13b).

- 10 - 11 / U A - 5 - 2 - 1 -

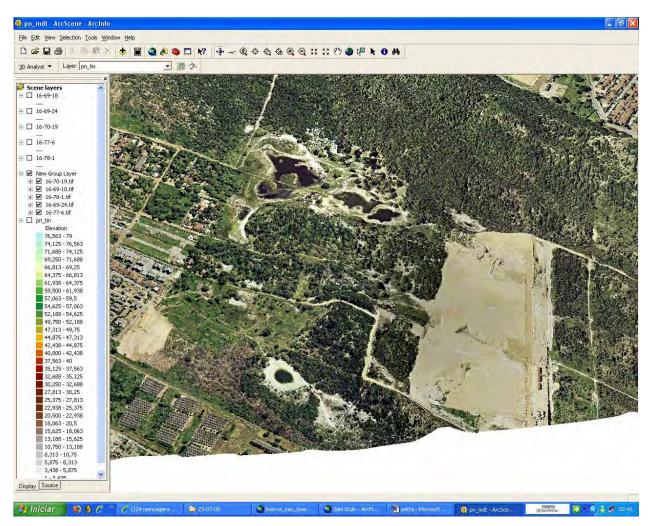


Figura 93 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) onde podese observar as fotos aéreas mosaicadas e integradas ao relevo do terreno. Modelo em três dimensões (3D da altimetria) com as feições reais das drenagens, onde pode-se observar as partes altas e os canais mais baixos das drenagens.

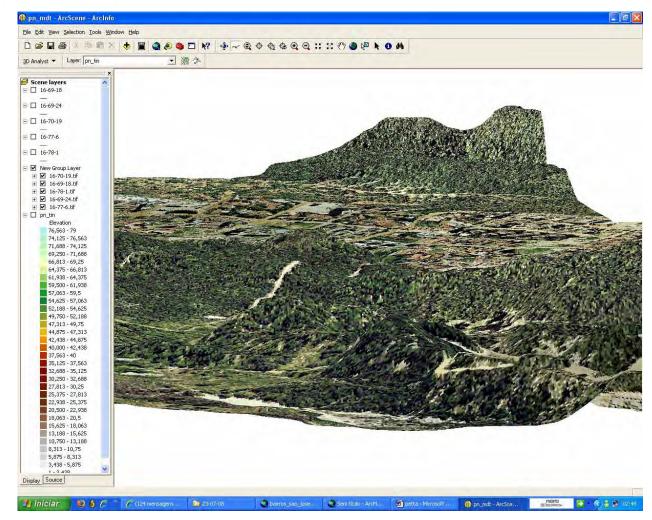


Figura 94 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) onde podese observar as fotos aéreas mosaicadas e integradas ao relevo do terreno. Modelo em três dimensões (3D da altimetria) com exagero vertical para realçar as feições reais das drenagens, onde pode-se observar as partes altas e os canais mais baixos das drenagens.

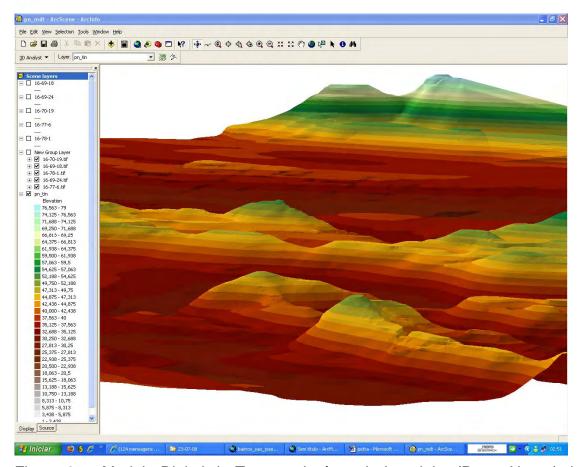


Figura 95 - Modelo Digital do Terreno da área da Lagoinha (Ponta Negra) destacado em níveis de altimetria e baseado nas imagens mostradas acima (Fig 93 e 94).

Inserção no Banco de Dados do cadastro executado pelas demais equipes do projeto, contendo todas as obras e feições de infra-instrutura existentes da drenagem urbana de Natal (bocas-de-lobo, poços de visita, rios e córregos canalizados, lagoas, etc.) juntamente com respectiva plotagem das informações em cartas.

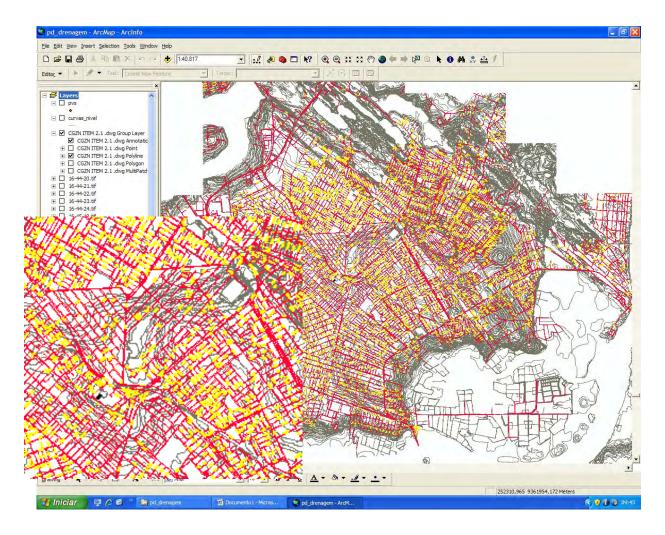


Figura 96 – Mostra o Banco de Dados com a plotagem das obras e feições de infrainstrutura existentes da drenagem urbana de Natal (bocas-de-lobo, poços de visita, rios e córregos canalizados, lagoas, etc.) juntamente com as curvas de nivel do terreno.

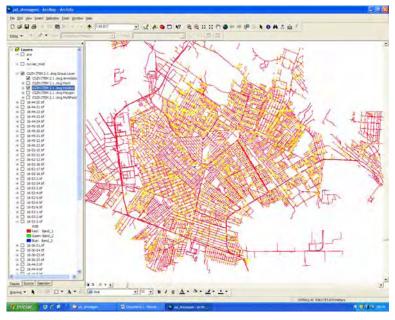


Figura 97 – Semelhante a anterior (fig 96), somente que nesta visão foram retiradas as curvas de nível. Isto mostra uma das ferramentas do banco de dados que permite visualizar os níveis de informação que se desejar e combinar e modelar entre eles.

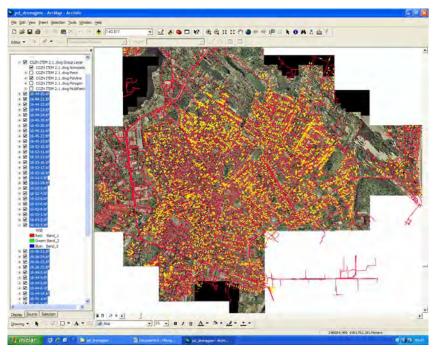


Figura 98 – Semelhante às figuras anteriores (fig. 96 e 97), somente que nesta visão foram acrescentadas as fotos aéreas da área, novamente permitindo visualizar os níveis de informação que se desejar e combinar e modelar entre eles

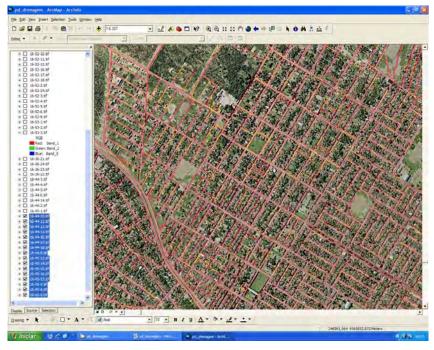


Figura 99 – Mostra uma ampliação do Banco de Dados com a plotagem das quadras e ruas juntamente com as obras e feições de infra-instrutura tendo ao fundo as fotos aéreas da área.

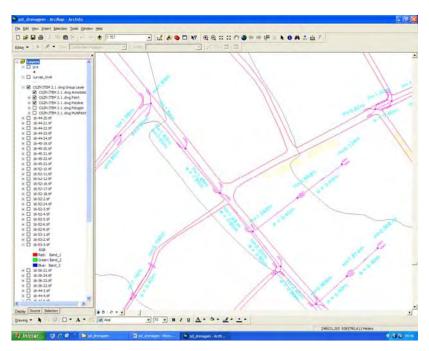


Figura 100 – Mostra uma ampliação maior da figura anterior com destaque para os detalhes das feições de infra-instrutura da drenagem urbana de Natal (bocas-de-lobo, poços de visita, canais, ligações, etc.)

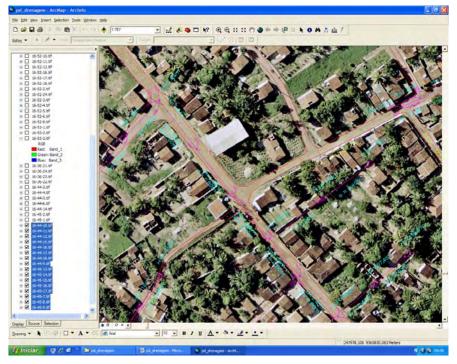


Figura 101 – A mesma imagem da figura anterior (fig.100) tendo ao fundo tendo ao fundo as fotos aéreas da área.

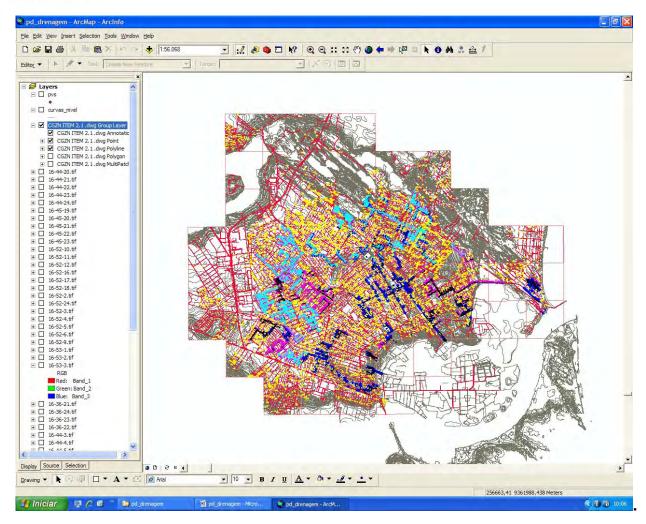


Figura 102 – Vista geral do banco de dados de toda Natal, com os níveis de informação de curvas de nível, quadras e lotes, rede de drenagem existente e infra-estrutura urbana (bocas-de-lobo, poços de visita, rios e córregos canalizados, lagoas, etc.).

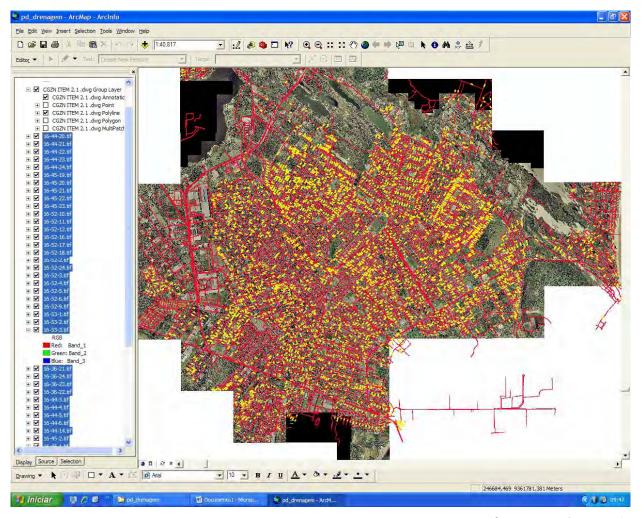


Figura 103 – Vista geral do banco de dados de toda Natal, com os níveis de informação de curvas de nível, quadras e lotes, rede de drenagem existente e infra-estrutura urbana (bocas-de-lobo, poços de visita, rios e córregos canalizados, lagoas, etc.). e ao fundo as fotografias aéreas georeferenciadas. Notar do lado esquerdo da figura o painel com os diversos níveis de informações que posso habilitar ou desabilitar de acordo com o que quero visualizar na tela.

Elaboração do Sistema ARCGIS e estruturação do banco de dados contendo as informações e dados do cadastro,

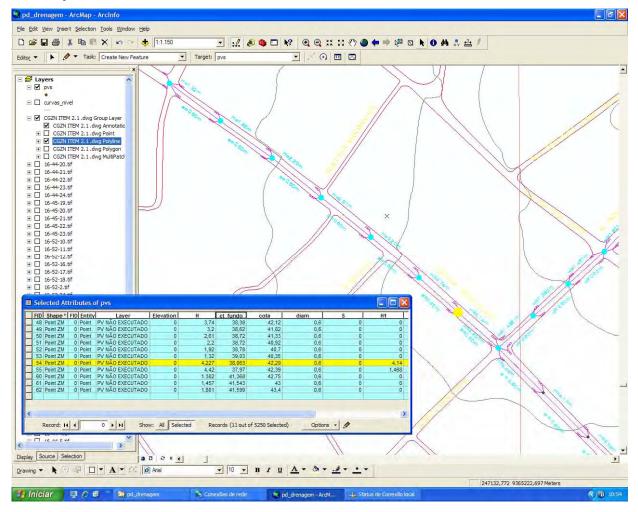


Figura 104 – Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. Como o Banco de dados é relacional e orientado a objeto, qualquer informação que quero consultar no universo de milhares de dados existentes no banco, posso fazer a pesquisa diretamente na base de dados e apresentar o resultado na tela.

Neste exemplo acima, foi feita uma consulta na linha a tabela (veja assinalado no painel a esquerda da imagem) para visualizar seus elementos no mapa. Ali estes aparecem em AMARELO.

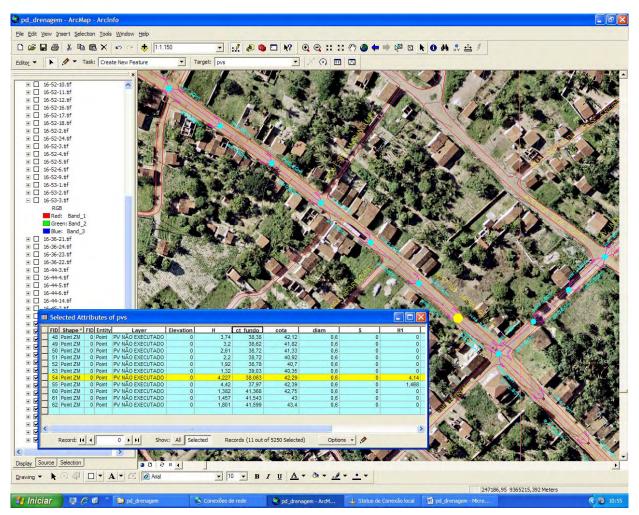


Figura 105 – O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é a mesma da figura anterior, somente difere porque aqui foi colocada a foto aérea georeferenciada ao fundo.

Neste exemplo foi feita uma consulta na linha CGZN ITEM 2.1 para visualizar seus elementos no mapa.

Na foto está destacado em AMARELO o poço de visita 54 e no banco de dados deste poço (tabela) pode-se ver seus dados e atributos, como sua altura (H) 4,227, a cota do fundo 38,063, a cota da boca 42,29 e seu diametro (diam) 0,6.

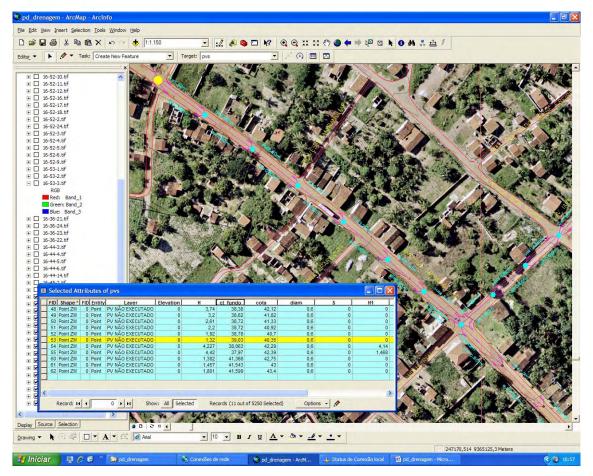


Figura 106 – O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é semelhante a consulta anterior, mudando o número do poço de visita. Na foto está destacado em AMARELO o poço de visita 53 e no banco de dados deste poço (tabela) pode-se ver seus dados e atributos, como sua altura (H) 1,22, a cota do fundo 39,03, a cota da boca 40,35 e seu diametro (diam) 0,6.

Desta forma como mostrado nas figuras 105 e 106 o sistema pode localizar qualquer um entre os milhares de poços de visita e além de localizar o elemento, pode mostrar seus atributos.

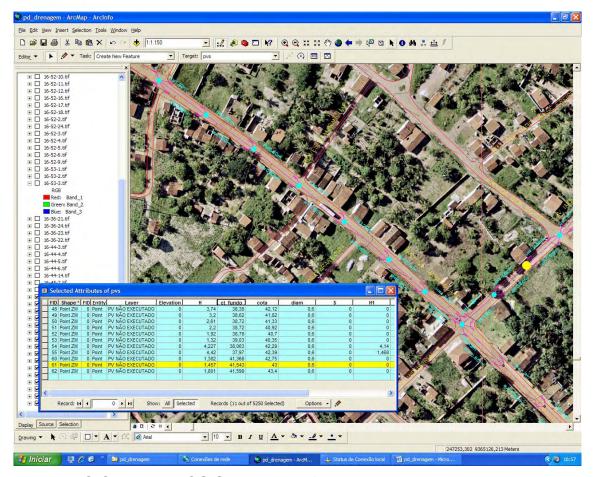


Figura 107 – O Sistema ARCGIS em execução, apresentando uma consulta ao Banco de Dados. A consulta é semelhante a consulta anterior, apenas mudando o número do poço de visita. Na foto está destacado em AMARELO o poço de visita 61 e que fica em outra linha de drenagem, perpendicular á linha anterior.

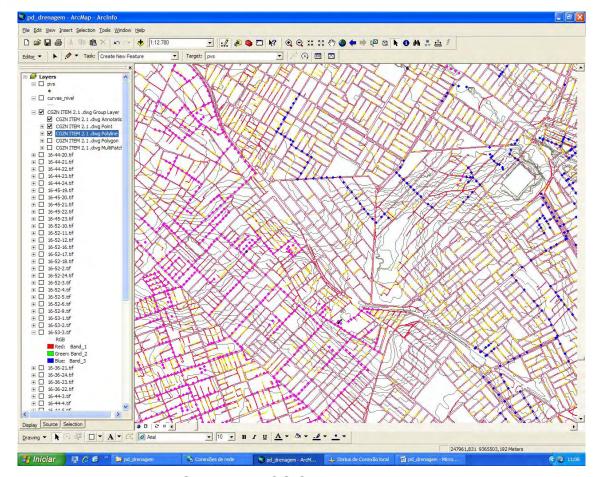
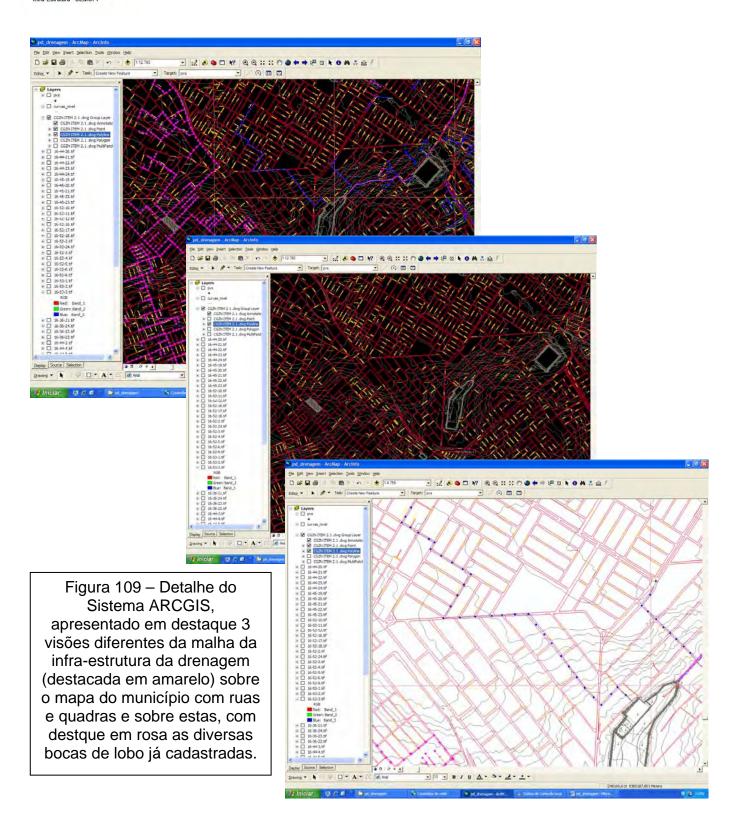



Figura 108 – Detalhe do Sistema ARCGIS, apresentando em destaque a malha da infra-estrutura da drenagem sobre o mapa do município com ruas e quadras e sobre estas, com destque em rosa as diversas bocas de lobo já cadastradas.

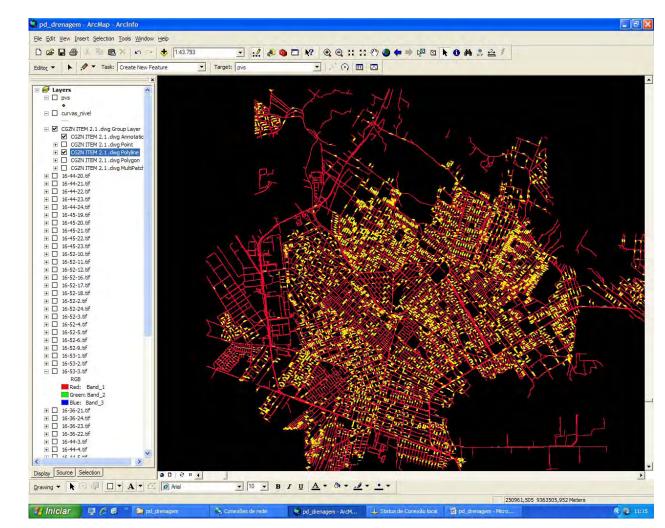


Figura 110 – Visão Geral do Banco de dados, já implementado no Sistema SIG, onde pode-se ver a Zona Norte de natal com suas respectivas feições de drenagem.

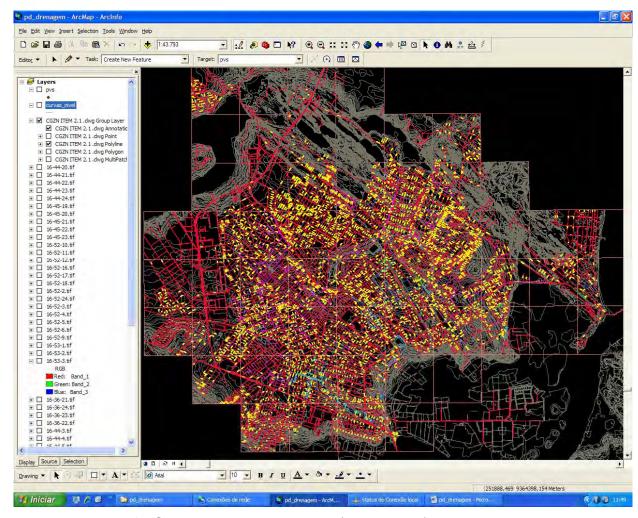


Figura 111 – Visão Geral do Banco de dados (Zona Norte)

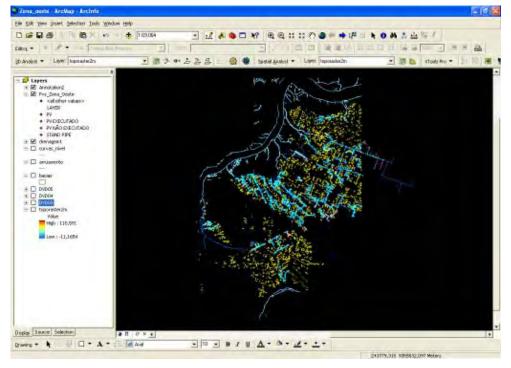


Figura 112 – Visão Geral do BD com os Poços de visita e Linhas, com suas *labels* em CAD.

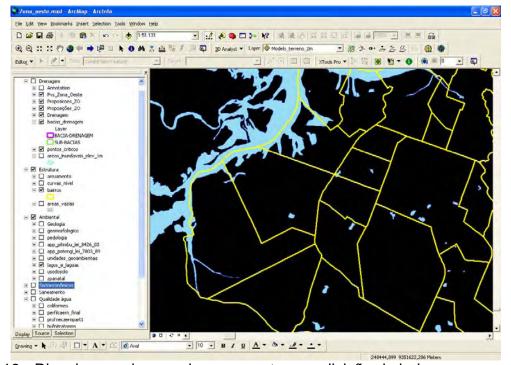


Figura 113 - Rios, lagos e lagoas da zona oeste com divisão de bairros

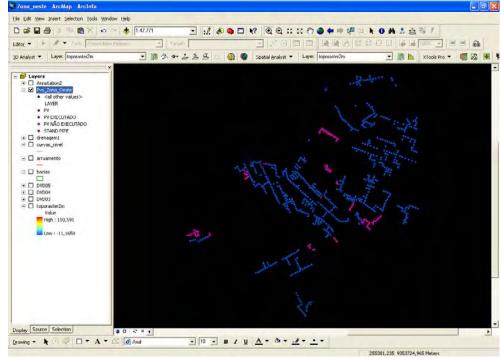


Figura 114 - Poços de visita não executados (magenta) e executados (azul).

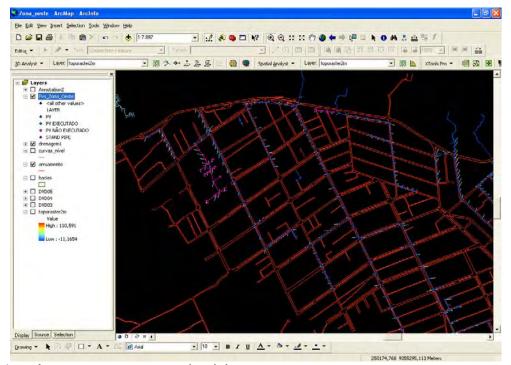


Figura 115 - Arruamento e poços de visita

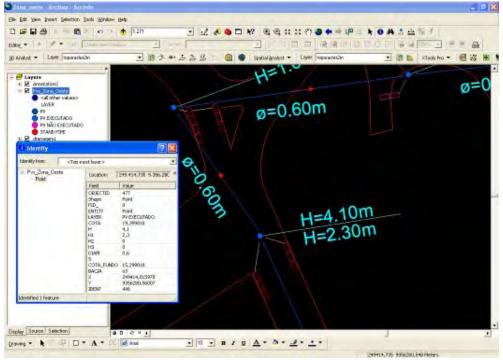


Figura 116 - Linhas de galerias, poços de visita e *labels*. Destaque para consulta ao BD do SIG.

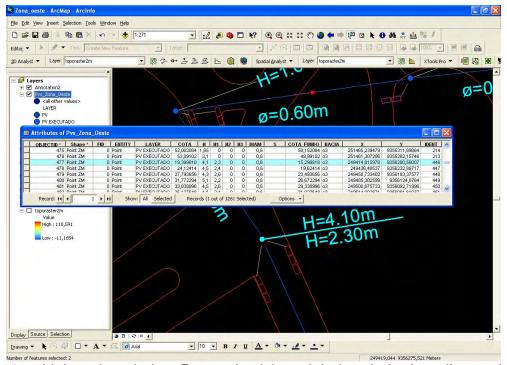


Figura 117 - Linhas de galerias, Poços de visita e *labels*, tabela de atributos dos PV's em SIG.

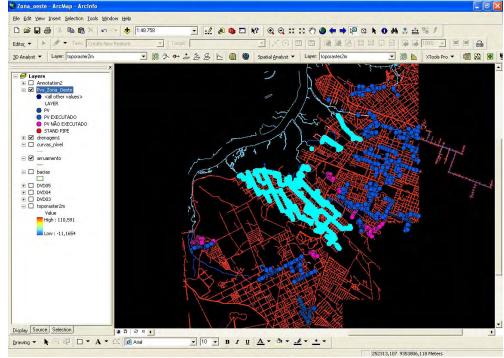


Figura 118 - Poços de visita contidos na bacia 03 selecionados no SIG.

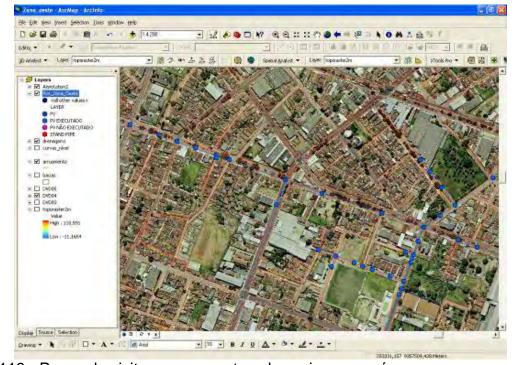


Figura 119 - Poços de visita e arruamento sobre a imagem aérea

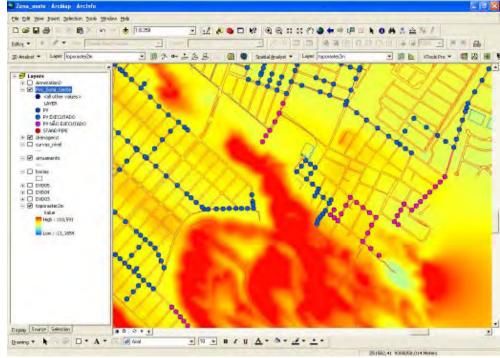


Figura 120 - Poços de visita sobre modelo digital de terreno

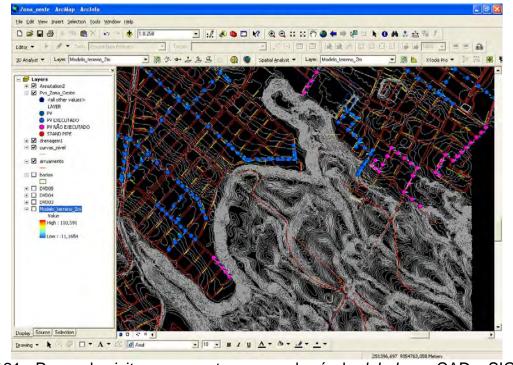


Figura 121 - Poços de visita arruamento, curvas de nível e labels em CAD e SIG.

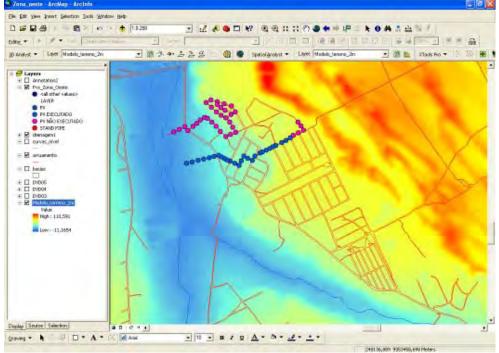


Figura 122 - Poços de visita e arruamento sobre MDT (Modelo Digital de Terreno)

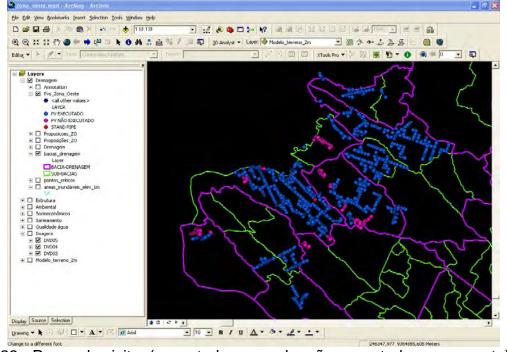


Figura 123 - Poços de visita (executada em azul e não executada em magenta) e limites de bacias (roxo) e sub-bacias (verde).

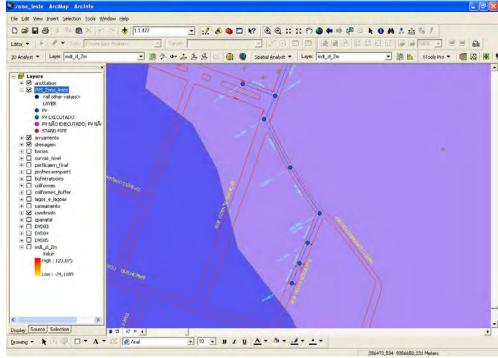


Figura 124 - Poços de visita linhas de distribuição

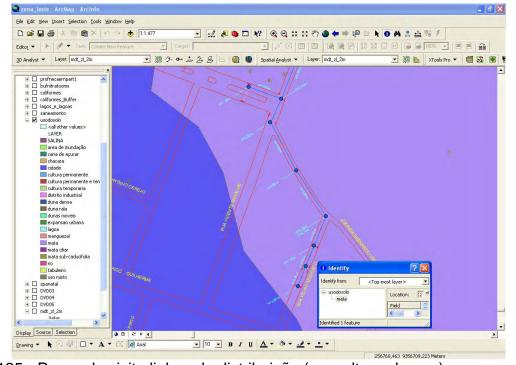


Figura 125 - Poços de visita linhas de distribuição (consulta ao banco)

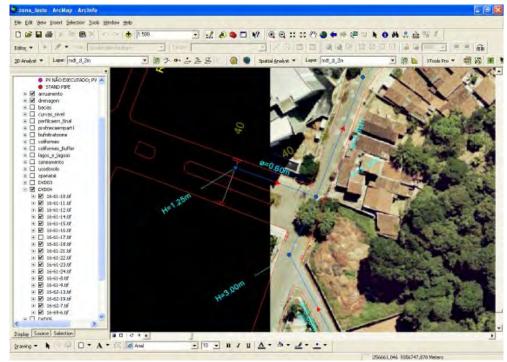


Figura 126 – Elementos de drenagem, arruamento e imagens em uma só visualização.

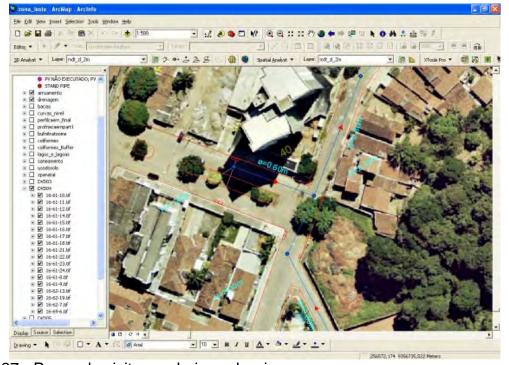


Figura 127 - Poços de visita e galerias sobre imagens.

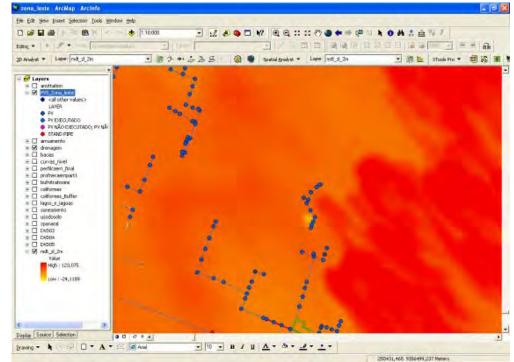


Figura 128 - Poços de visita e galeria sobre Modelo Digital de Terreno.

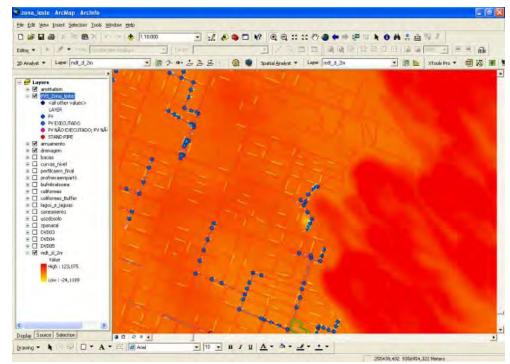


Figura 129 - Poços de visita e galeria com arruamento sobre Modelo Digital de Terreno

OBJECTID *	Shape "	Entity	Laver	cota	H	15	H2 H	diam	8	ident	cota fundo	X	Y	batia
	Port ZM	Point	PV	5,871055		0		0 0,		126		257115,647600	9360546,68217	L3
473	Port ZM	Point	PV	5,999775	1,32	0	8	0 0,	8	127	4,679775	257119,194398	9360539,93497	L3
474	Point ZM	Point	PV EXECUTADO	5,522618		0	0	0 0/		119	4,522618	257022,688444	9360702,31653	1.3
475	Point ZM	Point	PV EXECUTADO	5.045769	1	0	0		0.0,4×0,6	176	4,045769	256742,23575	9361945,33054	L3
476	Point ZM	Font	PV EXECUTADO	5,015513	0,6	0	0	0 1	0,4x0,6	177	4,415513	256741,711032	9361951,39307	L3
	Point ZM	Point	PV EXECUTADO	4,901569		0			0.0,4x0,6	179	4,351569	256736,049648	9361967,21872	
	Point ZM	Point	PV EXECUTADO	5.006898		0			0 0,4×0,8	181	5,006898	256726,839386	9361972,50904	
	Port ZM	Point	PV EXECUTADO	4,997505		0			0.0,4×0,6	100	4,247505	256730,291618		
	Point ZM	Point	PV EXECUTADO	5,843522		0		0 0,		155	2,393522	257005,526782	9361286,4617	
	Port ZM	Point	PV EXECUTADO	4,667646		0		0 0,		151	2,917646	256837,706264	9361248,97449	
	Point ZM	Font	PV EXECUTADO	4,206944		0		0 0,		150	2,006944	256011,177000	9361242,76294	
	Fort ZM	Port	PV EXECUTADO	4,229473		0		0 0,		149	3,429473	258791,948126	9361246,37411	
	Point ZM	Point	PV EXECUTADO	4,933766		0		0 0/		156	3,733766	256972,493047	9361434,6977	
		Point	PV EXECUTADO			0				154				
	Point ZM			5,531921							2,331921	256966,311162	9361278,57911	
	Point ZM	Point	PV EXECUTADO	4,902066		0		0 0,		152	3,052066	256808,837896	9361256,76462	
	Point ZM	Point.	PV EXECUTADO	5,773602		2		0 0/		104	3,773602	257579,447108	.9359845,79805	
	Point ZM	Point	PV EXECUTADO	10,88862				0 0/		101	8,06862	257546,801352	9359860,50441	
	Port ZM	Point	PV	5,576089		0		0 0,		128	4,146009	257134,198891	9360540,71412	
	Point ZM	Point	PV	5,48907		0		0 0/		129	3,90907	257137,932829	9360536,55356	
	Point ZM	Point	PV	4,993324		0		0 0,	5)	130	3,243324	257159,160054	9380540,7181	
	Port ZM	Port	PV EXECUTADO	35,68934		0		0		06	31,93934	254212,588374	9357537,96456	
	Point ZM	Point	PV EXECUTADO	40,121372		0		0 0,		85	37,521372	254055,169431	9357904,17334	
	Point ZM	Point	PV EXECUTADO	39,27906		-0		0 0/	6	.31	37,17906	254025,003046	9357544,04801	
485	Point ZM	Point	PV EXECUTADO	39,318396	1,5	0	0	0 0/	8	84	37,818396	254000,517354	9357575,67792	L4
496	Port ZM	Point	PV EXECUTADO	36,179416	3,95	0	0	0 16	5 tunei em RMC	78	32,229416	254250,011719	9357572,74212	L4
497	Point ZM	Point	PV EXECUTADO	37,981604	6,7	0			5 túnei em ASM	79	31,281604	254280,17523	9357599,28276	1.4
498	Point ZM	Port	PV EXECUTADO	35,867044	0	0	0	0 0,	6	87	35,867044	254187,862192	9357528,40503	L4
499	Port ZM	Point	PV EXECUTADO	39,719036	7,8	0	U	0 1,	5 tunel em ARM	80.	31,919036	254298,781383	9357622,83175	L4
	Point ZM	Point	PV EXECUTADO	22,48651		0	0	0 0,		27	21,13661	253808,153212	9358909,60112	
501	Point ZM	Point	PV EXECUTADO	23,995738		0	0	0 0,		28	20,495738	253825,320489	9358885.9633	1.4
	Port ZM	Point	PV EXECUTADO	24,630324		0		0 87		29	21,848324	253841,148843	9358913,45898	
	Fort ZM	Point	PV EXECUTADO	8,993473					0 1,50x0,0m	2	6.093473	253039,025367	9359161,9377	
	Point ZM	Point	PV EXECUTADO	12,249314			n	0 0,		4	8,899314	253908,51977	9359138,17999	
	Puirk ZM	Point	PV EXECUTADO	17,888828				0 0,		- 5	13,938828	253955,339532	9359125,05707	
	Point ZM	Port	PV EXECUTADO	19,003034				0 0,		6	15,703034	253977,224799	9359117,43111	
	Point 7M	Point	PV EXECUTADO	20,921004				0 0,		7	17,121004	253993,00847	9359112,00648	
	Point ZM	Point.	PV EXECUTADO	22,931974				0 0,		8	19,631974	254029,072372	9359100,17405	
	Port ZM	Point	PV EXECUTADO	24,47947				0 0,		10	21,05947	254045,074548	9359095,75118	
	Point ZM	Point	PV EXECUTADO	25,203002				0 0		12	21,843002	254062,745049	9359062,35604	
	Puint ZM	Port	PV EXECUTADO	26,962542				0 0		13	24.272542	254079,307885	9359029.56568	
	Point ZM	Point	PV EXECUTADO							16				
				20,530248						17	24,770248	254130,252827	9359045,63538	
	Point ZM	Port	PV EXECUTADO	31,070044				0 0)		18	29,178044	254102,016193	9359062,29938	
	Point ZM	Point:	PV EXECUTADO	32,905014				0 0/			29,805014	254203,62779	9359004,72415	
	Port ZM	Port	PV EXECUTADO	33,887896				0 0,		18	30,907886	254221,037035	9358957,40415	
	Pont ZM	Pont	PV EXECUTADO	36,20994	2	0		0 0,		69	24,20994	253990,/56921	9057779,60903	
	Point ZM	Point	PV EXECUTADO	36,25174		0		0 0		68	34,35174	253971,794393	9357804,17582	
	Point ZM	Point	PV EXECUTADO	36,095972	0	0		0 0,		72	36,095972	254019,195871	9357833,37622	
	Port ZM	Port	PV EXECUTADO	35,501036				0 0,		74	34,761036	254035,270572	9357812,94102	
	Point ZM	Point	PV EXECUTADO	35,41674				0 0/		75	34,11674	254042,41195	9357804,53304	E4
521	Point ZM	Point	PV EXECUTADO	35,451468	0,6	0	0	0 0	8.3	76	34,851468	254071,313762	9357775,72076	L4
522	Point ZM	Port	PV EXECUTADO	36,194204	1,1	0	0	0 0,	6	27	35,094204	254096,859975	9357743,22658	1.4
523	Port ZM	Port	PV EXECUTADO	28,92009		1,6	.0	0 0,		139	27,12009	253900,017015	9350190,23009	
524	Point ZM	Point	PV.EXECUTADO	29,25786		0	6	0 0,		38	27,45786	253855,056759	9358253,26242	1.4
525	Point ZM	Point	PV EXECUTADO	28,29514		0	0	0 0		37	26,19514	253811,47048	9358307,83598	
	-	- T		school Re	Contract of		-0-715	-				771-04-0-0		

Figura 130 – Vista Parcial do banco de dados.

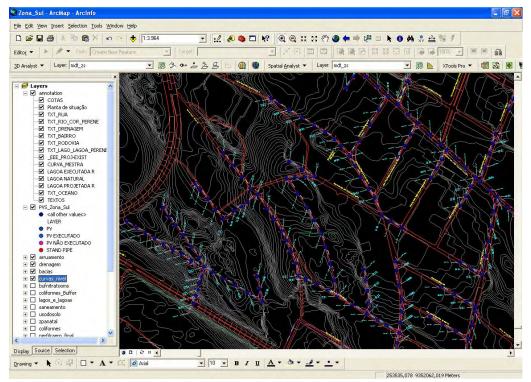


Figura 131 - PV's e seus valores desenhados, tubos, arruamento e nomes das ruas e curvas de nível.

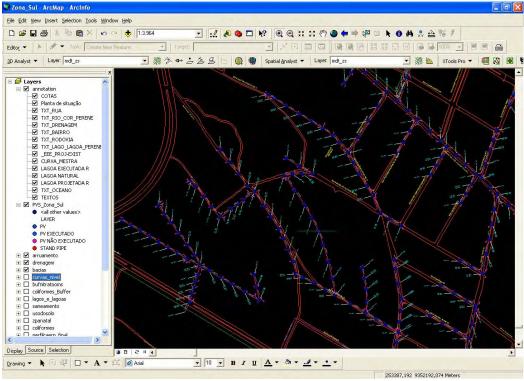


Figura 132 - PV's e seus valores desenhados, tubos, arruamento e nomes das ruas.

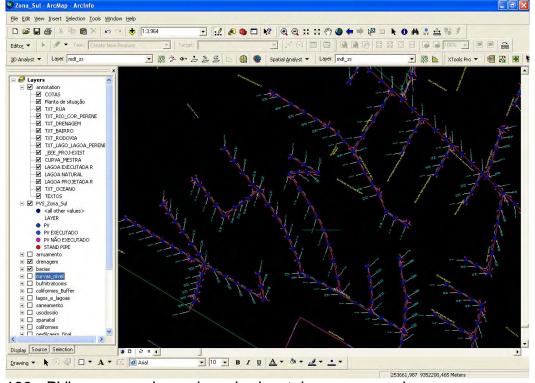


Figura 133 - PV's e seus valores desenhados, tubos e nomes das ruas.

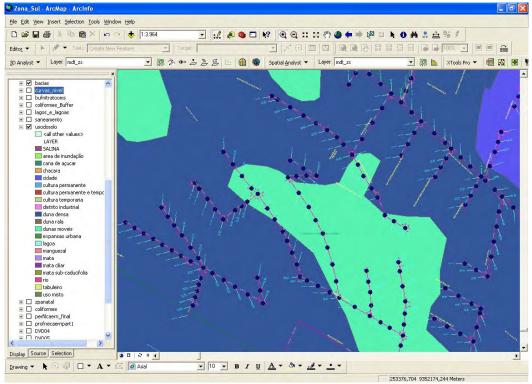


Figura 134 - Sobreposição da figura anterior ao mapa de uso e ocupação do solo.

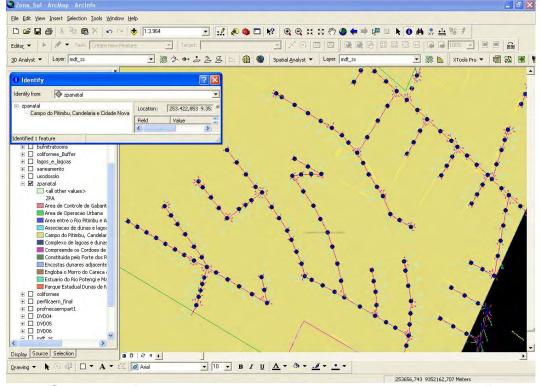


Figura 135 - Sobreposição dos PV's e tubos ao mapa das ZPA's e indicação da ZPA zotoposta.

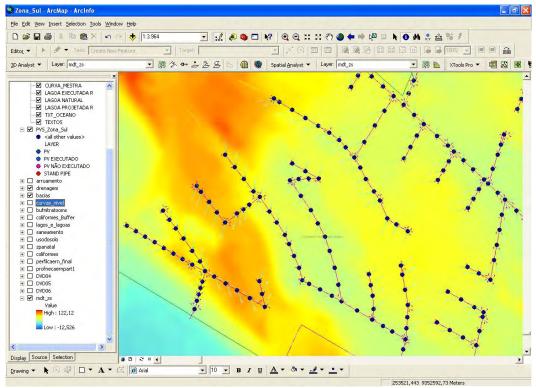


Figura 136 - Sobreposição dos PV's ao Modelo Digital de Terreno.

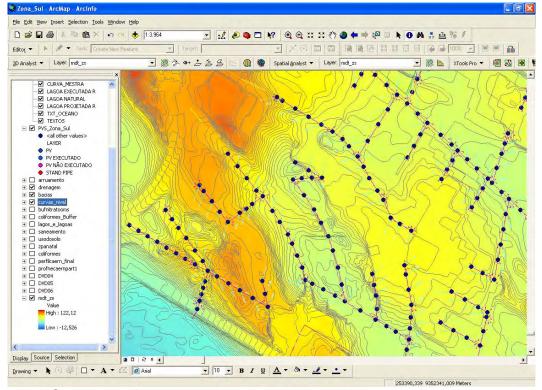


Figura 137 - Sobreposição dos PV's ao modelo digital de terreno junto com curvas de nível

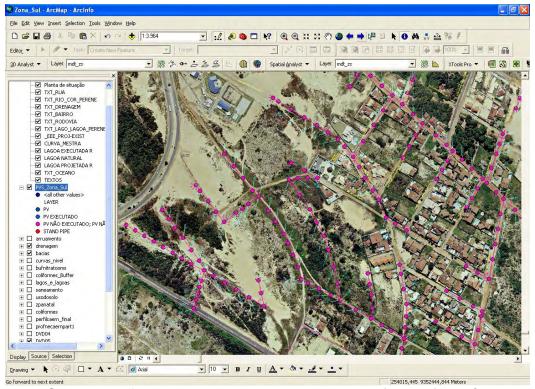


Figura 138 - Sobreposição dos PV's e tubos ao mosaico de fotografias aéreas.

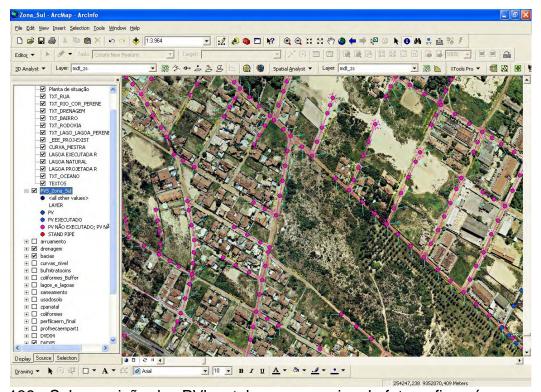


Figura 139 - Sobreposição dos PV's e tubos ao mosaico de fotografias aéreas.

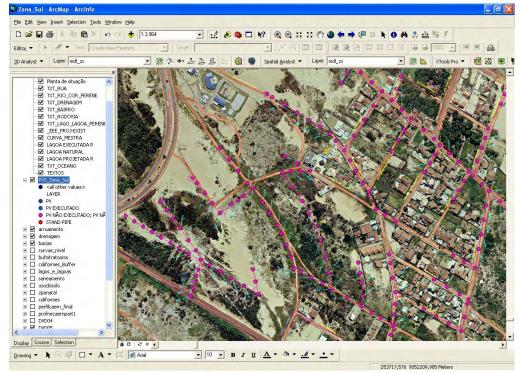


Figura 140 - Sobreposição dos PV's, tubos e arruamento ao mosaico de fotografias aéreas.

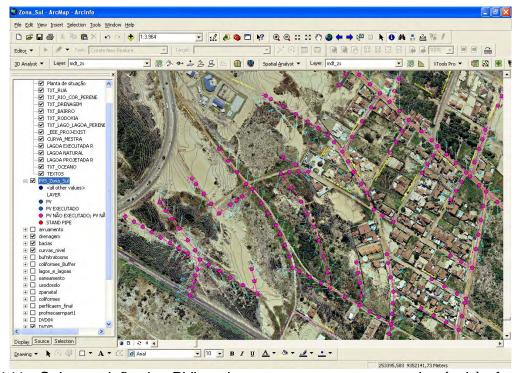


Figura 141 - Sobreposição dos PV's, tubos, arruamento e curvas de nível às fotografias aéreas.

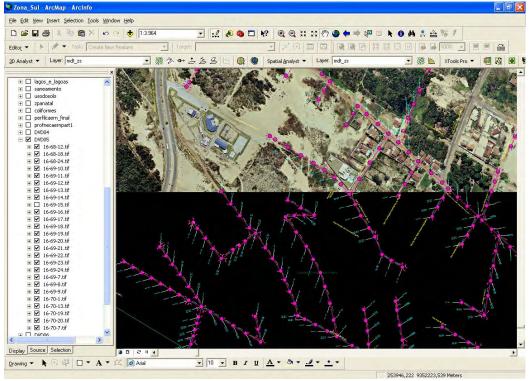


Figura 142 - Sobreposição parcial dos PV's e tubos às fotografias aéreas.

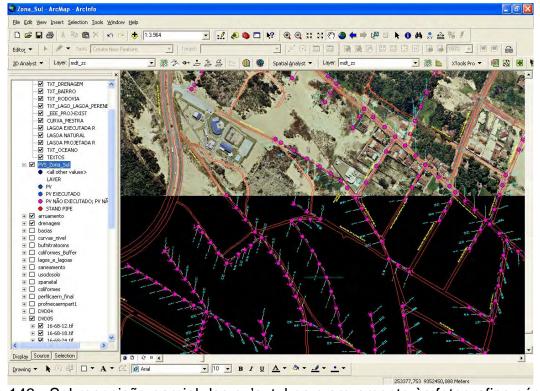


Figura 143 - Sobreposição parcial dos pv's, tubos e arruamento às fotografias aéreas

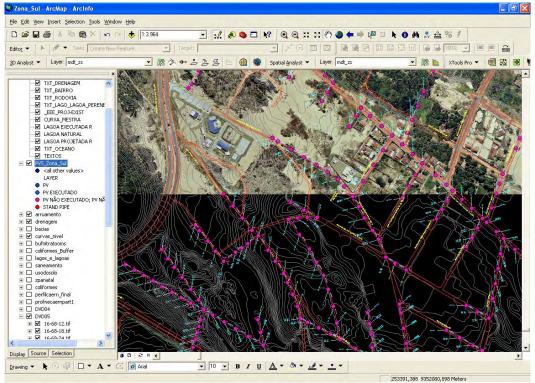


Figura 144 - Sobreposição parcial dos pv's, tubos, arruamento e curvas de nível às fotografias aéreas.

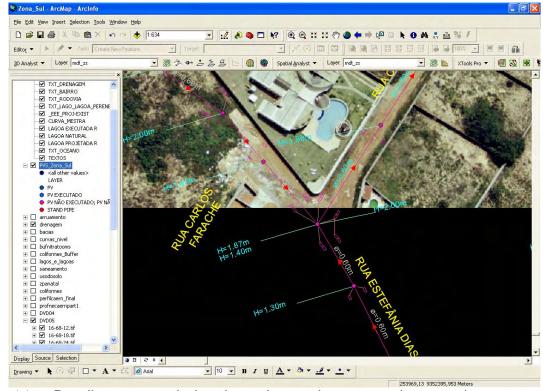


Figura 145 - Detalhe para os dados dos pv's em planta, os pv's e os tubos

CEP 59.082-354 - Fone/Fax: (084) 3219-3827 - 9407 1489 CNPJ: 70.052.634/0001-73 Insc. Est.: 20.041.249-3

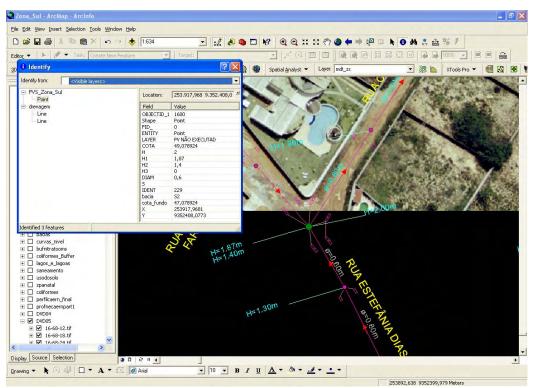


Figura 146 - Consulta das informações contidas no PV em verde

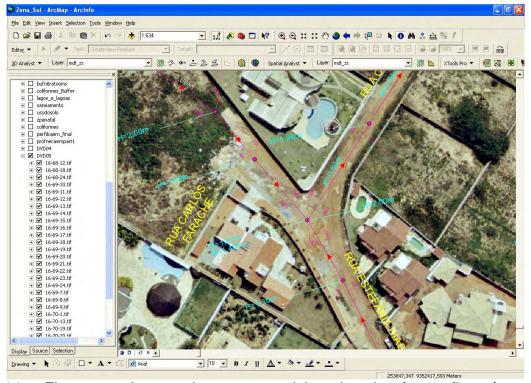


Figura 147 - Figura anterior completamente posicionada sobre fotografias aéreas

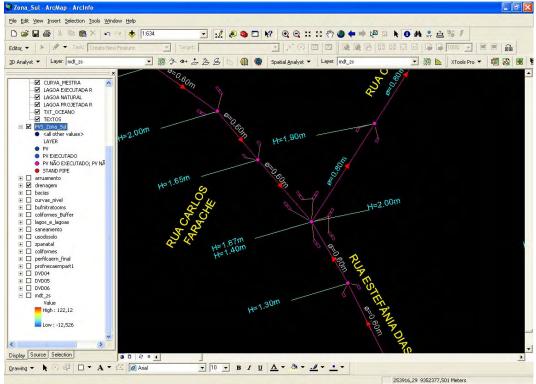


Figura 148 - Figura anterior sem fotografias aéreas

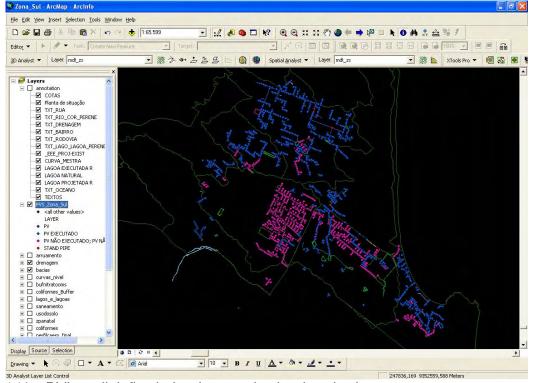


Figura 149 - PV's e divisão de bacias e suba-bacias de drenagem

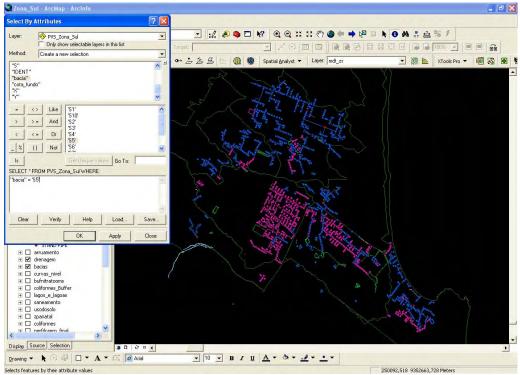


Figura 150 - Seleção por atributos: PV's pertencentes à determinada bacia

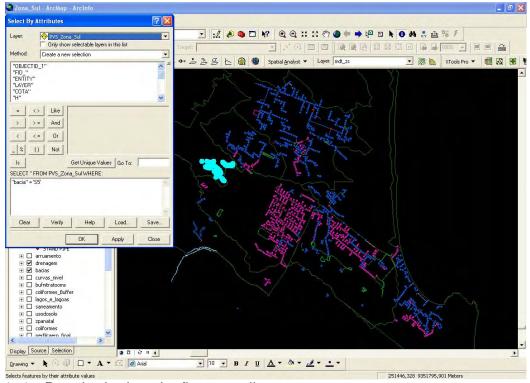


Figura 151 - Resultado da seleção por atributos

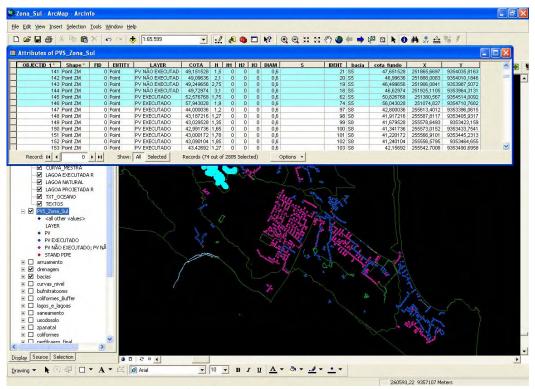


Figura 152 - Resultado da seleção por atributos em tabela

	OBJECTID 1' Shape'	FID	EHTITY	LAYER	COTA	H	H1 H	2 H3	DIAM	S	IDENT	bacia	cota fundo	χ	Υ	
Ī	88 Point ZM	1	Point	PV EXECUTADO	48,135272	1,4	.0	0 0	0,8		39	S5	48,735272	251789,3458	9354294,6442	
	89 Point ZM		Point	PV EXECUTADO	49,695792	1,25	1,25	0 0	0,8		30	S5	48,445792	251652,0365	9354240,9761	
Ī	90 Point ZM	- 31	Point	PV EXECUTADO	49,576208	1		0 0			31	S5	48,576208	251664,9973	9354255,4472	
1	91 Point ZM		Point	PV EXECUTADO	52,592896	0		0 0			54		52,592896	251525,905	9354706,2373	
i	92 Point ZM		Point	PV EXECUTADO	47,83124			0 0		2 tubos		S5	46,78124	252261,9819	9354563,7078	
1	93 Point ZM		Point	PV EXECUTADO	48,190048			0 0		2 tubos		S5	47,090048	252231,9819	9354563,7078	
t	94 Point ZM		Point	PV EXECUTADO	48,117256			0 0		2 tubos		S5 .	46.967256	252173,0417	9354563,7078	
t	95 Point ZM		Point	PV EXECUTADO	48,026344			0 0		2 tubos		S5	46,876344	252138,3418	9354563,6531	
t	96 Point ZM		Point	PV EXECUTADO	47,786068			0 0		2 tubos		S5	46,636068	252107,3488	9354562,9923	
t	97 Point ZM		Point	PV EXECUTADO	47,237764			0 0		2 tubos	10		46,087764	252072,2635	9354561,9761	
t	98 Point ZM		Point	PV EXECUTADO	46,89282			0 0		2 tubos	12		45,69282	252010,2887	9354559,2556	
٠	99 Point ZM		Point	PV EXECUTADO	47,034196			0 0		2 tubos	13		45,734196	251999,1898	9354570,2485	
H																
H	100 Point ZM		Point	PV EXECUTADO	48,401404					2 tubos		S5	47,101404	252257,493	9354598,4187	
ł	101 Point ZM		Point	PV EXECUTADO	49,51982			0 0		2 tubos		S5	48,21982	252253,869	9354633,2306	
1	102 Point ZM		Point	PV EXECUTADO	49,336684			0 0			28		47,836684	251700,7983	9354196,9122	
-	103 Point ZM		Point	PV EXECUTADO	52,023584			0 0			65		50,923584	251393,6468	9354630,4933	
L	104 Point ZM		Point	PV EXECUTADO	49,015576	1		0 0			.23		48,015576	251749,7488	9354152,5873	
L	105 Point ZM		Point	PV EXECUTADO	49,089264			0 0			24		47,689264	251728,3016	9354172,107	
L	106 Point ZM		Point	PV EXECUTADO	52,345892			0 0				S5	50,395892	251329,7426	9354620,9941	
	107 Point ZM		Point	PV EXECUTADO	51,672424			0 0			73		50,372424	251340,946	9354653,0953	
L	108 Point ZM		Point	PV EXECUTADO	52,99962	1,6	0	0 0			71	S5	51,39962	251318,3201	9354585,8014	
	109 Point ZM	1	Point	PV EXECUTADO	53,2238	1,5	1,1	0 0	0,6		69	S5	51,7238	251294,8924	9354515,6078	
I	110 Point ZM	- 0	Point	PV EXECUTADO	52,954328	1,1	0	0 0	0,6		70	S5	51,854328	251306,6062	9354550,7046	
Ī	111 Point ZM	1	Point	PV EXECUTADO	55,024516		1,7	0 0	0,6		68	S5	52,724516	251282,1149	9354477,4058	
r	112 Point ZM	1 3	Point	PV EXECUTADO	47,496612			0 0		2 tubos	14	S5	45,996612	251969,8782	9354595,1868	
1	113 Point ZM		Point	PV EXECUTADO	47,700904			0 0		2 tubos	15		45,850904	251943,053	9354618,8943	
T	114 Point ZM	1	Point	PV EXECUTADO	47,642852			0 0		2 tubos	17		45,392852	251872,3842	9354681,4202	
1	115 Point ZM		Point	PV EXECUTADO	51,647516			0 0			35		48.247516	251557.0543	9354328,0726	
t	116 Point ZM		Point	PV EXECUTADO	50,13366			0 0			36		47,38366	251639,7108	9354324,6841	
۱	117 Point ZM		Point	PV EXECUTADO	49,996216			0 0				S5	47,696216	251675,4634	9354364,6391	
t	118 Point ZM		Point	PV EXECUTADO	50,475976			0 0			27		48,975976	251674,7741	9354167,8649	
٠	119 Point ZM		Point	PV EXECUTADO	52,165712			0 0				S5	49,965712	251648,9927	9354138,602	
₽			Point					0 0						251646,9927		
ŀ	120 Point ZM			PV EXECUTADO	52,461292						25		50,961292		9354101,2495	
ŀ	121 Point ZM		Point	PV EXECUTADO	49,4879			0 0			29		48,1879	251676,4286	9354218,9286	
L	122 Point ZM		Point	PV EXECUTADO	50,6707			0 0			33		48,5707	251603,9788	9354284,5884	
L	123 Point ZM		Point	PV EXECUTADO	50,044716			0 0			32		48,494716	251625,9624	9354264,9906	
Ļ	124 Point ZM		Point	PV EXECUTADO	51,482392			0 0			34		48,782392	251579,1846	9354307,4323	
Į.	125 Point ZM		Point	PV EXECUTADO	47,732236			0 0		2 tubos	16		45,632236	251921,0105	9354638,2102	
	126 Point ZM		Point	PV EXECUTADO	51,98888	2,1		0 0			49		49,88888	251448,7474	9354522,925	
	127 Point ZM		Point	PV EXECUTADO	51,961976			0 0			48		49,661976	251410,3475	9354478,1546	
L	128 Point ZM		Point	PV EXECUTADO	48,6637			0 0			40		46,9137	251776,1501	9354325,9791	
1	129 Point ZM	1 31	Point	PV EXECUTADO	55,146456	1,05		0 0			66	S5	54,096456	251221,024	9354499,607	
	130 Point ZM	1	Point	PV EXECUTADO	55,64782	1,85	0	0 0	0,6		67	S5	53,79782	251249,2363	9354489,4056	
ľ	131 Point ZM		Point	PV EXECUTADO	53,249772			0 0			60		52,049772	251373,4219	9354454,4401	
Ī	132 Point ZM		Point	PV EXECUTADO	52,727036	1		0 0			61		51.727036	251375,5635	9354474,3234	
	133 Point ZM		Point	PV EXECUTADO	51,981292	1.6		0 0			64		50,381292	251389,754	9354590,6193	
ı	134 Point ZM		Point	PV EXECUTADO	52,957704			0 0			63		50,757704	251384,8221	9354551,8389	
1	135 Point ZM		Point	PV EXECUTADO	50,07878			0 0			50		48,42878	251477,1523	9354555,2075	
t	136 Point ZM		Point	PV EXECUTADO	50,1087			0 0			51		46,3087	251506,3363	9354588,1362	
t	137 Point ZM		Point	PV EXECUTADO	46,618332			0 0		2 tubos	11		45,418332	252030,4939	9354560,3843	
t	138 Point ZM		Point	PV EXECUTADO	48,335632			0 0		2 tubos		S5	47,235632	252201,6875		
ŀ	139 Point ZM		Point	PV EXECUTADO				0 0							9354563,6136	
1					48,069868	1,25				2 tubos		S5	46,819868	252259,473	9354583,1079	
H	140 Point ZM		Point	PV NÃO EXECUTAD	48,330788	1		0 0			22		47,330788	251843,5783	9354060,3311	
	141 Point ZM	1	Point	PV NÃO EXECUTAD	49,151528	1,5	0	0 0	0,6		21	55	47,651528	251865,6697	9354035,8163	

Figura 153 - Resultado da seleção por atributos em tabela

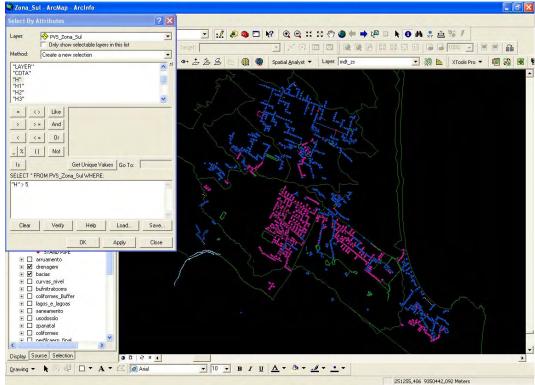


Figura 154 - Seleção por atributos: profundidade maior que 5 m

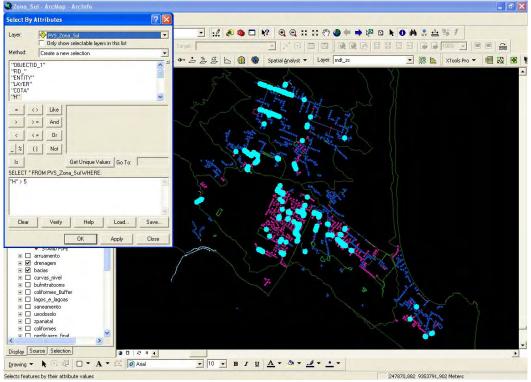


Figura 155 - Resultado da seleção por atributos

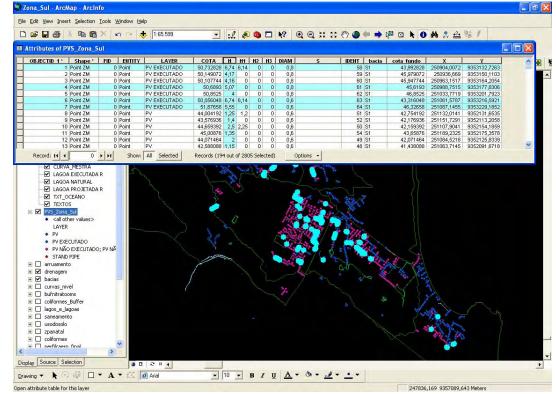


Figura 156 - Resultado da seleção por atributos em tabela

JECTID 11	Shape '	FID ENTITY	LAYER	COTA H	H1	H2	H3 DIA	M S	IDENT	bacia	cota fundo	X	Y
67	1. Point ZM	0 Point	PV EXECUTADO	37,834616 7	5 0	0	0	0 1,5X1,5 m	9	S7 -	30,334616	253900,5918	9357435,585
67	2 Point ZM	0 Point	PV EXECUTADO	38,308372 8	5 4,3	0	0	0,8 1,5X1,5 m	10	S7	29,808372	254007,6292	9357399,8851
67	Point ZM	0 Point	PV EXECUTADO	38,68284 7	8 0	0	0	0 1,5X1,5 m	11	S7	30,88284	254098,2151	9357365,5695
67	B Point ZM	0 Point	PV EXECUTADO	37,5856 7	4 0	0	0	0 1,5X1,5 m	12	S7	30,1856	254146,6849	9357347,4362
67	9 Point ZM	0 Point	PV EXECUTADO	36,053196 6	6 0	0	0	0 1,5X1,5 m	13	S7 -	29,453196	254216,6451	9357321,283
68	Point ZM	0 Point	PV EXECUTADO	35,521524 5,5	5 0	0	0	0 1,5X1,5 m	14	S7	29,971524	254251,925	9357308,1282
68	Point ZM	0 Point	PV EXECUTADO	35,771732 5	2 0	0	0	0 1,5X1,5 m	15	S7	30,571732	254289,4007	9357294,1436
68	7 Point ZM	0 Point	PV EXECUTADO	35,868348 5,0	5 0	0	0	1,2	-341	S7	30,818348	253403,7139	9356631,64
	9 Point ZM	0 Point	PV EXECUTADO	37,376364 5		0		1,2	344		31,976364	253552,0917	9356578,481
69	Point ZM	0 Point	PV EXECUTADO	39,533608 6		0		1,2	345		32,933608	253623,1547	9356552,9124
	Point ZM	0 Point	PV EXECUTADO	40,714372 7,7				1,2	346		32,964372	253693,8198	9356526,5107
	4 Point ZM	0 Point	PV EXECUTADO	42,153252 7,8				1,2	347		34,303252	253783,0144	9356492,376
	5 Point ZM	0 Point	PV EXECUTADO	42,824176 7,3				0.8	348		35,474176	253824.9515	9356476,3644
	6 Point ZM	0 Point	PV EXECUTADO	42,685928 7,4				0.8	349		35,235928	253870,6861	9356459,2026
	7 Point ZM	0 Point	PV EXECUTADO	42,710788 6				0,8	350		35,910788	253957,6523	9356426,2928
	Point ZM	0 Point	PV EXECUTADO	43,095816 5,7				0,8	351		37,345816	254049,3717	9356392.5683
	9 Point ZM	0 Point	PV EXECUTADO	39,741708 5			0	1	355		34,141708	253667,4745	9356453,5314
		0 Point						0.6	377				
	3 Point ZM		PV EXECUTADO		6 5,7						38,002584	253471,5387	9356118,3273
	9 Point ZM	0 Point	PV EXECUTADO	37,008224 6				1,2	340		30,808224	253327,9941	9356660,9014
	5 Point ZM	0 Point	PV EXECUTADO	36,854324 8			0	0 1,5X1,5 m		S7	28,654324	253320,6048	9357640,9442
	5 Point ZM	0 Point	PV EXECUTADO	37,220524 5			0	0 1,5x1,5		S7 -	31,920524	254435,6747	9357240,4173
	6 Point ZM	0 Point	PV EXECUTADO	35,69732 5,1			0	0 1,5x1,5		S7	30,54732	254364,348	9357266,4794
	B Point ZM	0 Point	PV EXECUTADO	39,916032 5			0	1		S7	34,616032	254539,078	9357203,0759
	1 Point ZM	0 Point	PV EXECUTADO	39,134576 5				1,5		S7	33,534576	255013,0027	9357031,9303
87	1 Point ZM	0 Point	PV	39,82496 5			0	0	128		34,72496	255107,2982	9356002,2626
-87	B Point ZM	0 Point	PV EXECUTADO	37,560876 5	,2 1,36	0	0	0,8	127	S7	32,360876	255129,9823	9356066,4124
89	7 Point ZM	0 Point	PV EXECUTADO	38,953844 5,2	25 0	0	0	0,8	121	S7	33,703844	255238,7429	9356375,8491
93	7 Point ZM	0 Point	PV	36,33438 5	,1 2,8	0	0	0,8	189	S7	31,23438	256549,1909	9355573,4244
113	9 Point ZM	0 Point	PV NÃO EXECUTAD	32,800068 5,0	5 0	0	0	1	417	S7 -	27,750068	254941,2125	9355475,4359
118	9 Point ZM	0 Point	PV NÃO EXECUTAD	56,527336 5.2	2 0	0	0	0.8	533	S7	51,307336	254683,6791	9354398,5604
119	Point ZM	0 Point	PV NÃO EXECUTAD	56,975644 5,9	2 0	0	0	0.8	532	S7	51,055644	254667,3586	9354454,5294
119	1 Point ZM	0 Point	PV NÃO EXECUTAD	57,000856 6,2		0	0	0.8	531		50,780856	254657,3014	9354490,6556
	2 Point ZM	0 Point	PV NÃO EXECUTAD	57.398704 6.5				8,0	530		50,878704	254647,3545	9354526,8123
	3 Point ZM	0 Point	PV NÃO EXECUTAD	56,86748 6,1				0,8	529		50,67748	254637,0352	9354562,5524
	4 Point ZM	0 Point	PV NÃO EXECUTAD	56,39142 5,8				0,8	528		50,54142	254626,8547	9354598,5402
	5 Point ZM	0 Point	PV NÃO EXECUTAD	48,607584 5,6				0.8	480		42,997584	254209,614	9351132,4007
	Point ZM	0 Point	PV NÃO EXECUTAD	49,570804 7.8				0,8	481		41,700804	254214,7914	9351167,0245
	7 Point ZM	0 Point	PV NÃO EXECUTAD	48,690132 6,0				0,6	482		42,620132	254190,1413	9351180,5573
	Point ZM	0 Point	PV NÃO EXECUTAD	48,122284 5,5				0,6	483		42,582284	254158,9441	9351196,3114
	9 Point ZM	0 Point	PV NÃO EXECUTAD	47,836856 5,0				0,8	484		42,756856	254127,6958	9351212,0767
		0 Point	PV NÃO EXECUTAD				0	1					
	1 Point ZM	0 Point		33,301834 5,5			0		551		27,791834	253425,9095	9351236,7893
	2 Point ZM		PV NÃO EXECUTAD	34,41202 6,5				1	552		27,84202	253400,2497	9351252,3319
	3 Point ZM	0 Point	PV NÃO EXECUTAD	34,67096 6,5			0	1	553		28,14096	253374,5898	9351267,8744
	4 Point ZM	0 Point	PV NÃO EXECUTAD	34,305672 6,4			0	1	554		27,825672	253342,5333	9351287,2394
	5 Point ZM	0 Point	PV NÃO EXECUTAD	34,182556 6,2			0	1	555		27,912556	253316,8734	9351302,7819
	6 Point ZM	0 Point	PV NÃO EXECUTAD	33,605548 6,0			0	1	556		27,535548	253291,2062	9351318,239
	7 Point ZM	0 Point	PV NÃO EXECUTAD	34,799972 5,0			0	1	557		29,789972	253265,5391	9351333,696
	B Point ZM	0 Point	PV NÃO EXECUTAD	55,026004 5,1				0,6	410		49,906004	253693,9071	9351835,5506
	B Point ZM	0 Point	PV NÃO EXECUTAD	51,997512 7,3		0		0,6	321		44,627512	253560,3776	9352094,7892
	Point ZM	0 Point	PV EXECUTADO	52,352372 6,1				0,6	429		46,202372	254135,219	9351711,923
151	5 Point ZM	0 Point	PV EXECUTADO	51,619412 5	5 0	0	0	0,8	424	S2	46,119412	254309,5168	9351609,8326
	B Point ZM	0 Point	PV EXECUTADO	51,888628 5,5		0		0,8	430		46,338628	254112,0204	9351670,4734
151	9 Point ZM	8 Point	PV EXECUTADO	51,005596 5	1 0	0	0	0,8	431	S2	45,905596	254089,3795	9351630,0293
	S Point ZM	0 Point	PV NÃO EXECUTAD				0	1	283		46,294388	252845,2959	9354438,2349

Figura 157 - Resultado da seleção por atributos em tabela

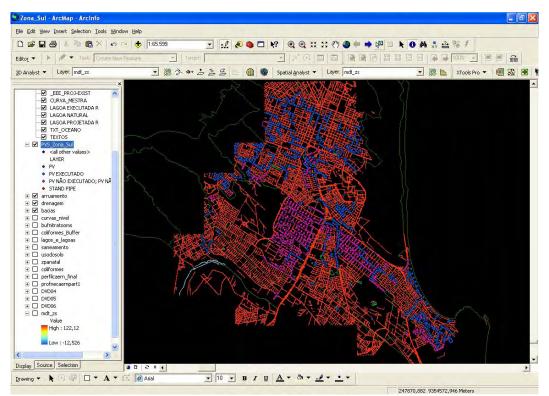


Figura 158 - PV's, tubos, arruamento e divisão de bacias

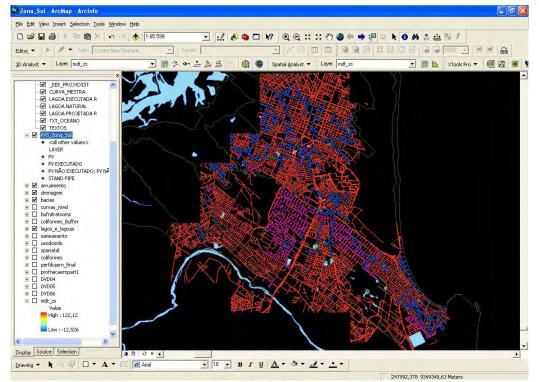


Figura 159 - PV's, tubos, arruamento e divisão de bacias, rios e lagoas

CNPJ: 70.052.634/0001-73 Insc. Est.: 20.041.249-3

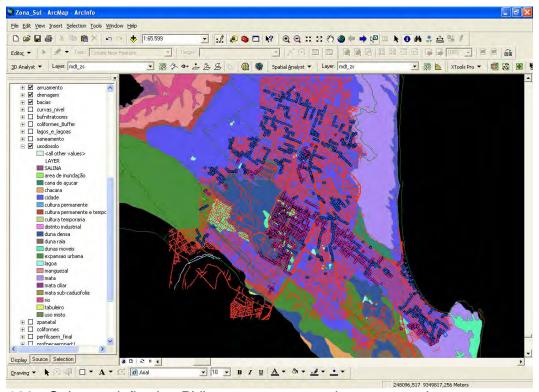


Figura 160 - Sobreposição dos PV's e arruamento sobre o mapa de uso e ocupação do solo

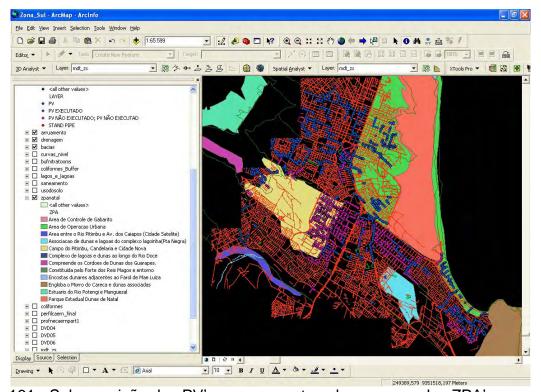


Figura 161 - Sobreposição dos PV's e arruamento sobre o mapa das ZPA's

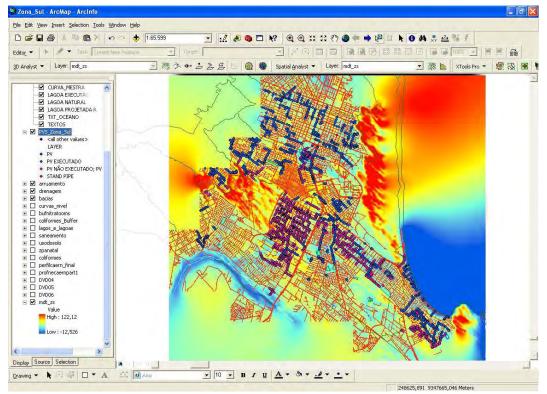


Figura 162 - Sobreposição dos PV's e arruamento sobre o modelo digital de terreno da zona sul

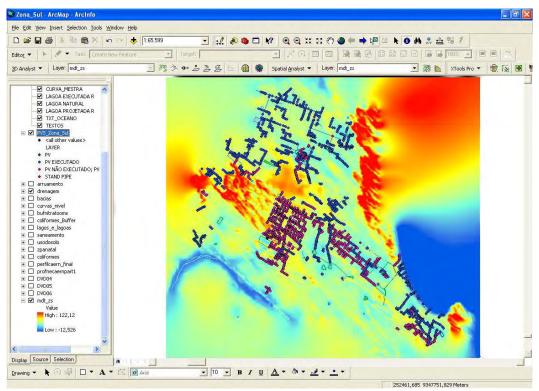


Figura 163 - Sobreposição dos PV's sobre o modelo digital de terreno da zona sul

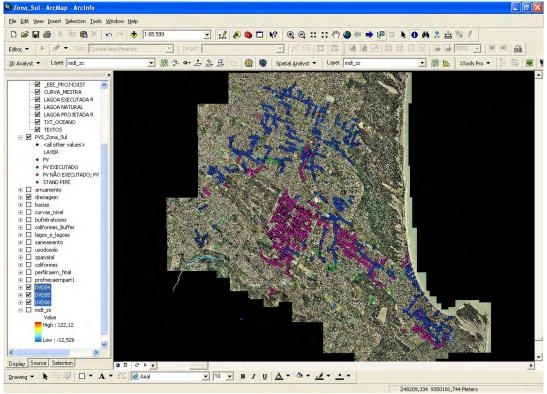


Figura 164 - Sobreposição dos PV's ao mosaico de fotografias aéreas da cidade

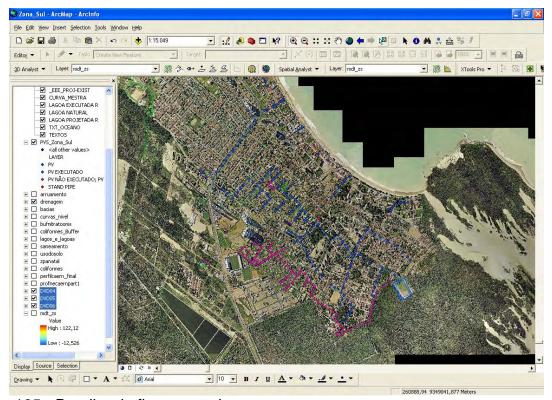


Figura 165 - Detalhe da figura anterior

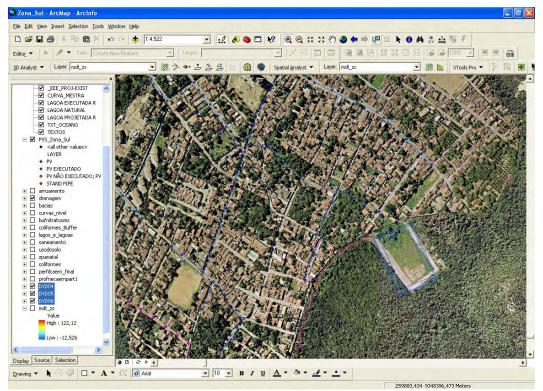


Figura 166 - Detalhe da figura anterior

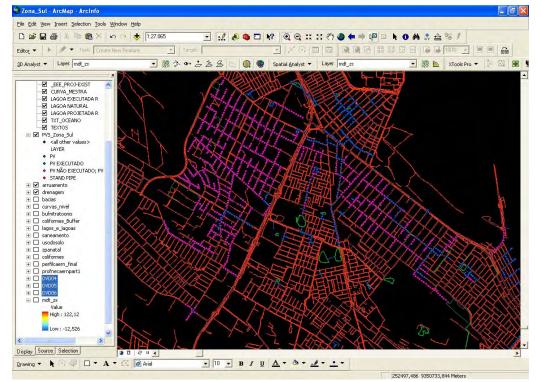


Figura 167 - Arruamento, PV's e tubos

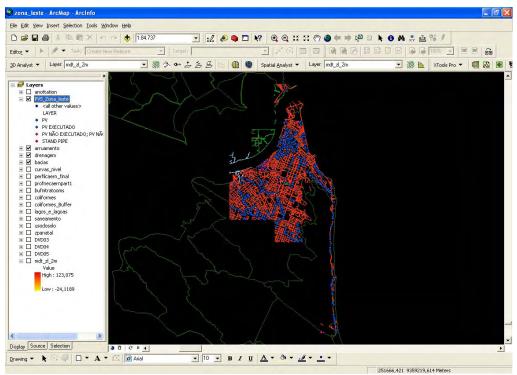


Figura 168 - Imagem mostrando divisão de bacias, arruamento e PV's

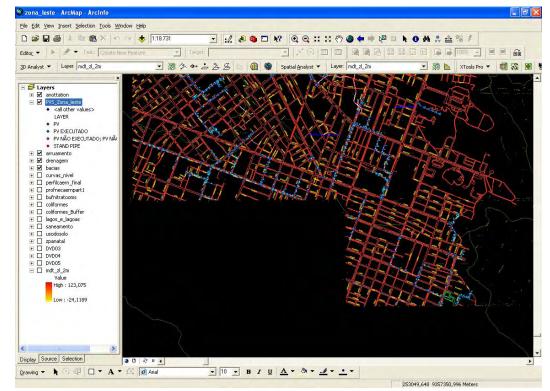


Figura 169 - Arruamento, PV's, temas de drenagem e nomes das ruas

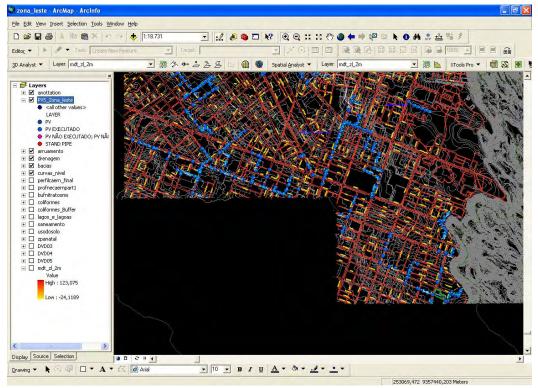


Figura 170 - Curvas de nível, arruamento, PV's, temas de drenagem e nomes das ruas

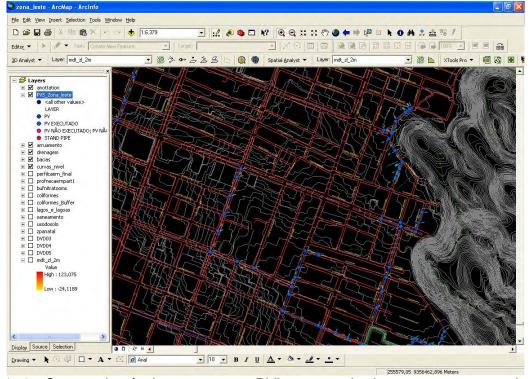


Figura 171 - Curvas de nível, arruamento, PV's, temas de drenagem e nomes das ruas (detalhe)

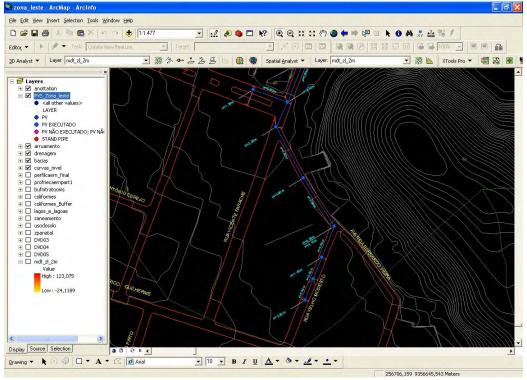


Figura 172 - Detalhe para os valores dos PV's em planta, arruamento, curvas de nível e nome das ruas

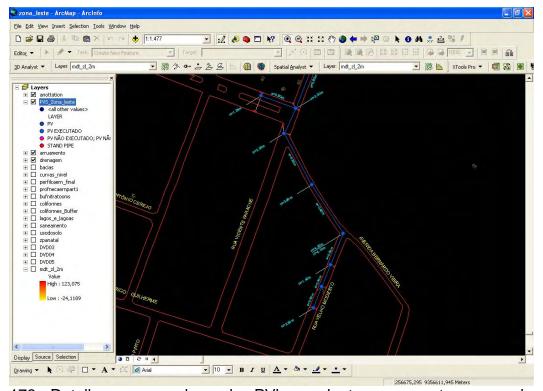


Figura 173 - Detalhe para os valores dos PV's em planta, arruamento e nome das ruas

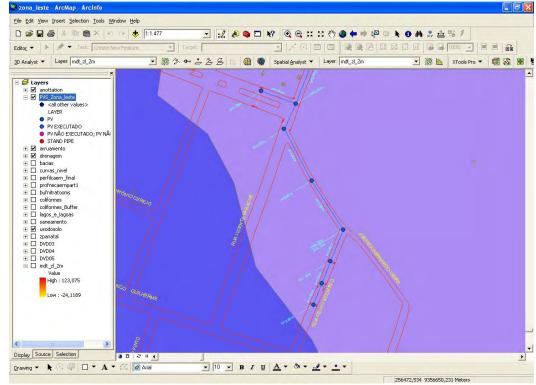


Figura 174 - Figura anterior sobreposta ao mapa de uso e ocupação do solo

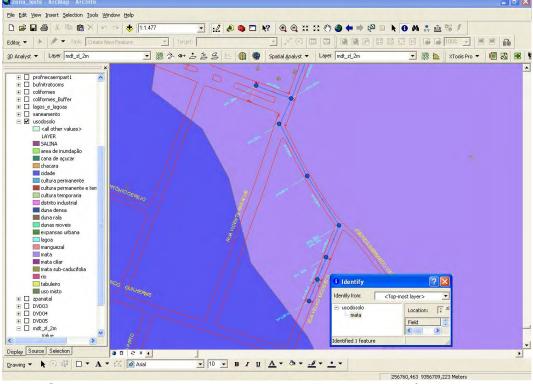


Figura 175 - Consulta ao atributo de uso e ocupação do solo da área

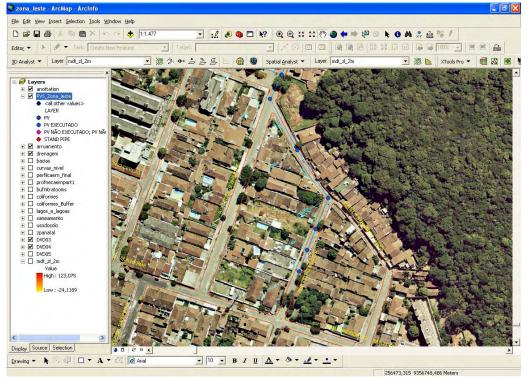


Figura 176 - Sobreposição da figura anterior à fotografia aérea da cidade

Figura 177 - Detalhe para valores dos PV's em planta, arruamento, tubos executados e PV's sobrepostos e não sobrepostos à fotografia aérea

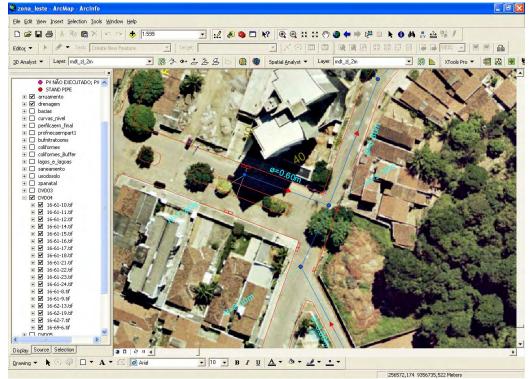


Figura 178 - Figura anterior completamente sobreposta à fotografia aérea

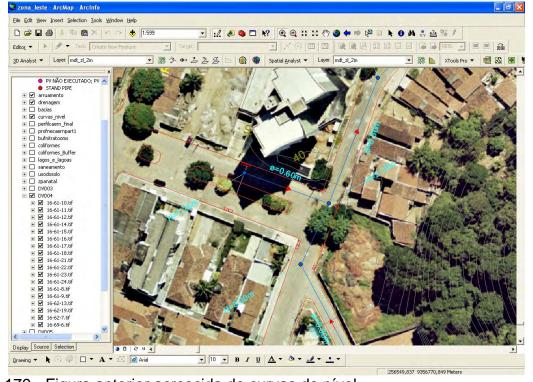


Figura 179 - Figura anterior acrescida de curvas de nível

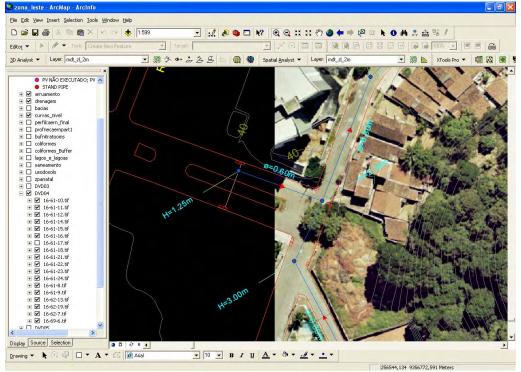


Figura 180 - Figura anterior com retirada parcial das fotografias aéreas

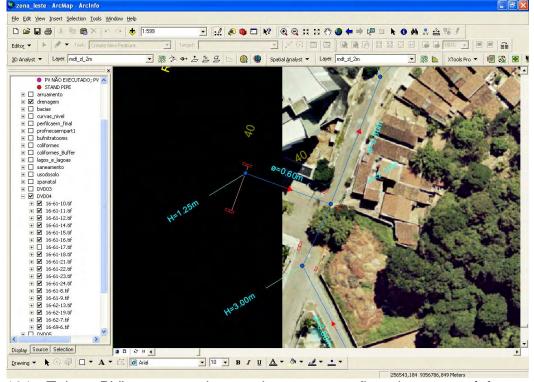


Figura 181 - Tubos, PV's e seus valores sobrepostos e não sobrepostos à fotografia aérea

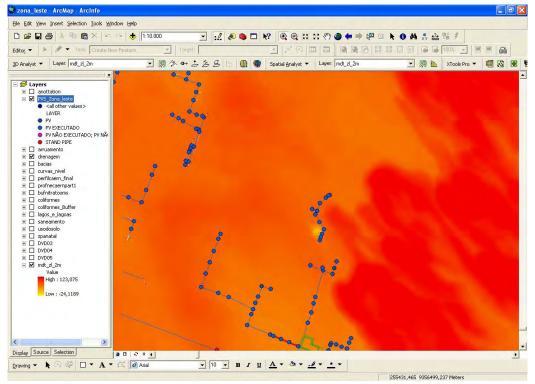


Figura 182 - PV's e tubos sobrepostos ao modelo digital de terreno

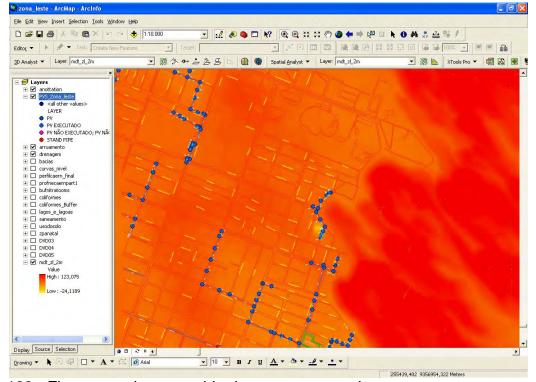


Figura 183 - Figura anterior acrescida de ruas e nomes de ruas

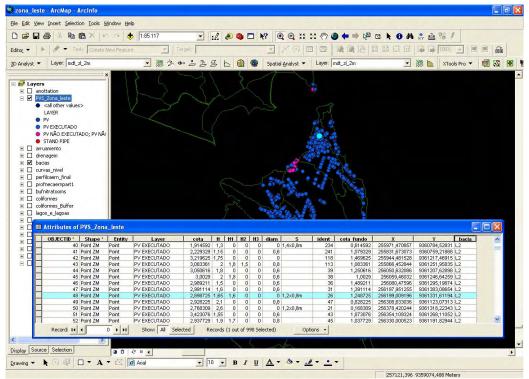


Figura 184 - Espacialização do dado em tabela dos PV's no terreno

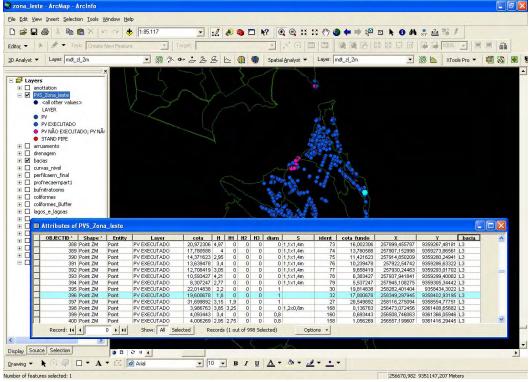


Figura 185 - Outra consulta no mesmo aspecto

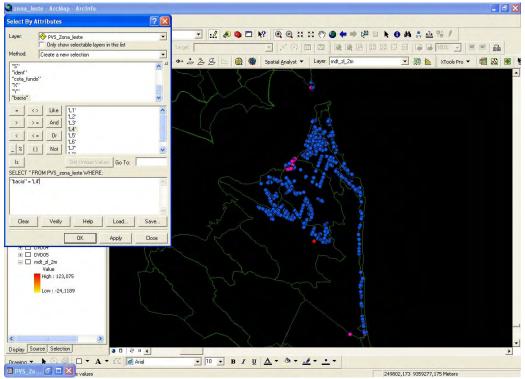


Figura 186 - Seleção por atributos, todos os PV's de uma determinada bacia

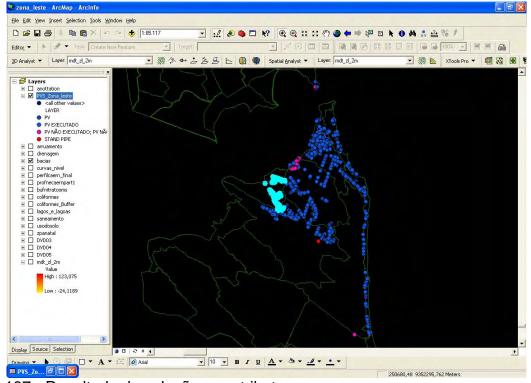


Figura 187 - Resultado da seleção por atributos

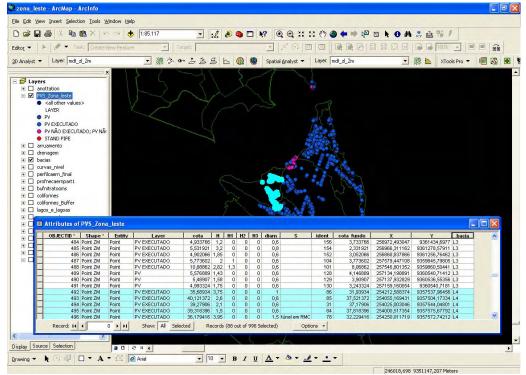


Figura 188 - Exibição dos dados selecionados em tabela

	OBJECTID '	Shape '	Entity	Layer	cota	H	HI	H2	H3	diam	S	ident	cota fundo	X	Υ	bacia
Г	472	Point ZM	Point	PV	5,871055	1,25	0	0	0	0,6		126	4,621055	257115,647608	9360546,68217	L3
	473	Point ZM	Point	PV	5,999775	1,32	0	0	0	0,6		127	4,679775	257119,194398	9360539,93497	L3
Г	474	Point ZM	Point	PV EXECUTADO	5,522618	1	0	0	0	0,6		119	4,522618	257022,688444	9360702,31653	L3
		Point ZM	Point	PV EXECUTADO	5,045769	1	0	0	0		0,4x0,6	176	4,045769	256742,23575	9361945,33054	
1		Point ZM	Point	PV EXECUTADO	5,015513		0	0			0.4x0.6	177	4,415513	256741,711032	9361951,39307	
1		Point ZM	Point	PV EXECUTADO	4,901569		0	0			0,4x0,6	179	4,351569	256736,049648	9361967,21872	
1		Point ZM	Point	PV EXECUTADO	5,006898	0	0	0			0,4x0,6	181	5,006898	256726,839386	9361972,50904	
+		Point ZM	Point	PV EXECUTADO	4,997505		0	0			0,4x0,6	180	4,247505	256730,291618	9361971,34693	
+			Point	PV EXECUTADO	5,843522		0	0			0,420,6	155	2,393522	257005,526782	9361286,4617	
+		Point ZM Point ZM	Point	PV EXECUTADO	4,667646		0	0				151	2,933522		9361248,97449	
+																
+		Point ZM	Point	PV EXECUTADO	4,206944		0	0				150	2,686944	256811,177888	9361242,76294	
+		Point ZM	Point	PV EXECUTADO	4,229473		0	0				149	3,429473	256791,948126		
1		Point ZM	Point	PV EXECUTADO	4,933766		0	0				156	3,733766	256972,493047	9361434,6977	
L		Point ZM	Point	PV EXECUTADO	5,531921		0	0				154	2,331921	256966,311162		
1		Point ZM	Point	PV EXECUTADO	4,902066		0	0				152	3,052066	256868,837866	9361256,76462	
1		Point ZM	Point	PV EXECUTADO	5,773602	2	1	0				104	3,773602	257579,447108	9359845,79805	
1		Point ZM	Point	PV EXECUTADO	10,88862		1,3	0				101	8,06862	257546,801352	9359860,50441	
1		Point ZM	Point	PV	5,576889		0	0				128	4,146889	257134,198891	9360540,71412	
1	490	Point ZM	Point	PV	5,48907		0	0				129	3,90907	257137,932829	9360536,55356	
1	491	Point ZM	Point	PV	4,993324	1,75	0	0				130	3,243324	257159,160054	9360540,7181	L3
	492	Point ZM	Point	PV EXECUTADO	35,68934		0	0		1		86	31,93934	254212,588374	9357537,96456	L4
İ		Point ZM	Point	PV EXECUTADO	40,121372		0	0	0	0,6		85	37,521372	254055,169431	9357504,17334	
1	494	Point ZM	Point	PV EXECUTADO	39,27906	2,1	0	0	0			31	37,17906	254025,003046	9357544,04801	L4
1		Point ZM	Point	PV EXECUTADO	39,318396		0	0	0			84	37,818396	254000,517354	9357575,67792	
1		Point ZM	Point	PV EXECUTADO	36,179416		0	0.			túnel em RMC	78	32,229416	254250,011719	9357572,74212	
1		Point ZM	Point	PV EXECUTADO	37,981604		0	0			túnel em ARM	79	31,281604	254280,17523	9357599,28276	
1		Point ZM	Point	PV EXECUTADO	35,867044		0	0.			torici ciri Artin	87	35,867044	254187,662192		
1		Point ZM	Point	PV EXECUTADO	39,719036		0	0			túnel em ARM	80	31,919036	254298,761383	9357622,83175	
+		Point ZM	Point	PV EXECUTADO	22,48651		0	0			torier em with	27				
٠			Point	PV EXECUTADO			0	0				28	21,13651	253808,153212	9358885,9633	
1-		Point ZM			23,995738									253825,320489		
1		Point ZM	Point	PV EXECUTADO	24,638324		0	0				29	21,848324	253841,148843	9358913,45898	
-		Point ZM	Point	PV EXECUTADO	8,993473		1,1	0			1,50x0,8m	2	6,093473	253839,025367	9359161,9377	
4		Point ZM	Point	PV EXECUTADO	12,249314			0.				4	8,899314	253908,51977	9359138,17999	
Į.		Point ZM	Point	PV EXECUTADO	17,888828			0				5	13,938828	253955,339532	9359125,05707	
1		Point ZM	Point	PV EXECUTADO	19,803834			0.				6	15,703834	253977,224799	9359117,43111	
1		Point ZM	Point	PV EXECUTADO	20,921004			0				.7	17,121004	253993,00847	9359112,00648	
1		Point ZM	Point	PV EXECUTADO	22,931974			0.				.8	19,631974	254029,072372		
	509	Point ZM	Point	PV EXECUTADO	24,47947	3,42	1,3	0	0	0,6		10	21,05947	254045,074548	9359095,75118	L4
I	510	Point ZM	Point	PV EXECUTADO	25,203002			0	.0			12	21,843002	254062,745049	9359062,35604	L4
		Point ZM	Point	PV EXECUTADO	26,982542		1,2	0	0			13	24,272542	254079,307865	9359029,56568	L4
T		Point ZM	Point	PV EXECUTADO	28,530248			0				16	24,770248	254130,252827	9359045,63538	
1		Point ZM	Point	PV EXECUTADO	31,878044			0				17	29,178044	254182,016193	9359062,29938	
1		Point ZM	Point	PV EXECUTADO	32,905014			0				18	29,805014	254203,62779	9359004,72415	
1		Point ZM	Point	PV EXECUTADO	33,887896		1,1	0	0			19	30.907896	254221,037035	9358957,40415	
1		Point ZM	Point	PV EXECUTADO	36,20994	2	0	0				69	34,20994	253990,756921	9357779,60933	
٠		Point ZM	Point	PV EXECUTADO	36,25174		0	0				68	34,35174	253971,794393	9357804,17582	
1																
-		Point ZM	Point	PV EXECUTADO	36,095972	0	0	0				72	36,095972	254019,195671	9357833,37622	
1		Point ZM	Point	PV EXECUTADO	35,581036		0,6	0				74	34,781036	254035,270572	9357812,94102	
1		Point ZM	Point	PV EXECUTADO	35,41674		0,6	0				75	34,11674	254042,41195	9357804,53304	
1		Point ZM	Point	PV EXECUTADO	35,451468		0	0				76	34,851468	254071,313762		
1		Point ZM	Point	PV EXECUTADO	36,194204		0	0				77	35,094204	254096,859975	9357743,22658	
1		Point ZM	Point	PV EXECUTADO	28,92009		1,6	0				39	27,12009	253900,817015		
1		Point ZM	Point	PV EXECUTADO	29,25786		0	0				38	27,45786	253855,956759	9358253,26242	
1	525	Point ZM	Point	PV EXECUTADO	28,29514	2.1	0	0	0	0,8		37	26,19514	253811,47048	9358307,83598	L4

Figura 189 - Exibição dos dados selecionados em tabela

JECTID 1	Shape '	Entity	Layer	cota		HI	H2 1	13	diam S	ident	cota fundo	X		bacia
542	Point ZM	Point	PV EXECUTADO	6,492868		0	0	0	0 1,50X0,80	1	4,692868	253761,437656	9359188,41293	L4
503	Point ZM	Point	PV EXECUTADO	8,993473	2,9	1,1	0	0	0,8 1,50x0,8m	2	6,093473	253839,025367	9359161,9377	L4
541	Point ZM	Point	PV EXECUTADO	9,497076	1.28	0	0	0	0,8	3	8,217076	253844,532141	9359161,35151	L4
	Point ZM	Point	PV EXECUTADO	12,249314		1.38	0	0	0,8	4		253908,51977	9359138,17999	
	Point ZM	Point	PV EXECUTADO	17,888828			0	0	0,8	5		253955,339532	9359125,05707	
	Point ZM	Point	PV EXECUTADO	19,803834			0	0	0,8	6		253977,224799	9359117,43111	
	Point ZM	Point	PV EXECUTADO	20,921004			0	0	0,8	7		253993,00847	9359112,00648	
	Point ZM	Point	PV EXECUTADO	22,931974			0	0	0,8	8		254029,072372	9359100,17405	
	Point ZM	Point	PV EXECUTADO	24,24707			0	0	0,8	9		254039,74824	9359093,23558	
	Point ZM	Point	PV EXECUTADO	24,47947			0	0	0,6	10		254045,074548	9359095,75118	
	Point ZM	Point	PV EXECUTADO	24,786352			0	0	0,6	11		254051,398481	9359084,68002	
	Point ZM	Point	PV EXECUTADO	25,203002			0	0	0,6	12		254062,745049	9359062,35604	
	Point ZM	Point	PV EXECUTADO	26,982542			0	0	0,6	13	24,272542	254079,307865	9359029,56568	
	Point ZM	Point	PV EXECUTADO	27,101436			0	0	0,6	14	24,301436	254086,404149	9359031,95451	
	Point ZM	Point	PV EXECUTADO	27,657526			0	0	0,6	15		254103,613836	9359037,23257	
	Point ZM	Point	PV EXECUTADO	28,530248			0	0	0,6	16	24,770248	254130,252827	9359045,63538	
	Point ZM	Point	PV EXECUTADO	31,878044			0	0	0,6	17	29,178044	254182,016193	9359062,29938	
514	Point ZM	Point	PV EXECUTADO	32,905014	3,1	1,15	0	0	0,6	18	29,805014	254203,62779	9359004,72415	L4
515	Point ZM	Point	PV EXECUTADO	33,887896	2,98	1,1	0.	0	0,6	19	30,907896	254221,037035	9358957,40415	L4
562	Point ZM	Point	PV EXECUTADO	35,059912		0	0	0	0,6	.20	33,859912	254281,481494	9358974,30938	L4
536	Point ZM	Point	PV EXECUTADO	36,810376		0	0.	0	0,6	21	34,560376	254360,025829	9359003,78154	L4
563	Point ZM	Point	PV EXECUTADO	36,884048		0	0	0	0,6	22	34,994048	254382,293265	9358955,20005	L4
	Point ZM	Point	PV EXECUTADO	18,541236		0	0	0	0,6	23	17,391236	253719,20062	9358900,02842	
	Point ZM	Point	PV EXECUTADO	19,644188	1	0	0	0	0,6	24	18,644188	253747,464154	9358903,04606	
	Point ZM	Point	PV EXECUTADO	20,766572		0	0.	0	0,6	25	19,816572	253767,627036	9358905,22386	
	Point ZM	Point	PV EXECUTADO	15,048108			0	0	0,6	26	10,998108	253775,992076	9358955,81787	
	Point ZM	Point	PV EXECUTADO	22,48651		0	0	0	0,6	27	21,13651	253808,153212	9358909,60112	
	Point ZM	Point	PV EXECUTADO	23,995738		0	0	0	0,6	28	20,495738	253825,320489	9358885,9633	
	Point ZM	Point	PV EXECUTADO	24,638324		0	0	0	0,6	29	21,848324	253841,148843	9358913,45898	
										30				
	Point ZM	Point	PV EXECUTADO	26,548274		0	0	0	0,6		24,068274	253867,408439	9358916,1685	
	Point ZM	Point	PV EXECUTADO	39,27906		0		0	0,6	31	37,17906	254025,003046	9357544,04801	
	Point ZM	Point	PV EXECUTADO	25,953858		0	0	0	1	32	24,703858	253613,362089	9358545,0854	
	Point ZM	Point	PV EXECUTADO	25,298866		0	0	0	1	33	23,698866	253658,509006	9358489,99826	
	Point ZM	Point	PV EXECUTADO	25,916994		0	0	0	1	34	24,316994	253697,153051	9358444,23202	
	Point ZM	Point	PV EXECUTADO	26,258832			0	0	0,8	35	24,658832	253733,850701	9358398,03373	
	Point ZM	Point	PV EXECUTADO	27,913558	2	0	0	0	0,8	36	25,913558	253777,176341	9358348,24529	
	Point ZM	Point	PV EXECUTADO	28,29514		0	0	0	0,8	37	26,19514	253811,47048	9358307,83598	
524	Point ZM	Point	PV EXECUTADO	29,25786	1,8	0	0	0	0,8	38	27,45786	253855,956759	9358253,26242	L4
523	Point ZM	Point	PV EXECUTADO	28,92009	1,8	1,6	0	0	0,6	39	27,12009	253900,817015	9358198,23009	L4
	Point ZM	Point	PV EXECUTADO	28,786594		0	0	0	0,6	40	27,046594	253931,829342	9358161,81228	
	Point ZM	Point	PV EXECUTADO	29,488122		0	0	0	0,6	41	27,688122	253974,330242	9358108,08476	
	Point ZM	Point	PV EXECUTADO	25,9731		0	0	0	0,8	42	24,8231	253682,40998	9358371,80491	
	Point ZM	Point	PV EXECUTADO	25,946728		0	0	0	0,8	43	24,646728	253690,793369	9358364,24679	
	Point ZM	Point	PV EXECUTADO	27,929764		0	0	0	0,6	44	26,829764	253764,335667	9358265,56194	
	Point ZM	Point	PV EXECUTADO			0	0	0	0,6	45	29,042392	253817,159308	9358130,01016	
		Point		30,392392										
	Point ZM		PV EXECUTADO	29,670506			0	0	0,6	46	26,770506	253833,542905	9358142,03536	
	Point ZM	Point	PV EXECUTADO	29,298774			0	0	0,6	47	26,198774	253843,47781	9358149,93403	
	Point ZM	Point	PV EXECUTADO	29,028728		0	0	0	0,6	48	27,128728	253857,234644	9358161,15188	
	Point ZM	Point	PV EXECUTADO	29,301446		0	0	0	0,6	49	28,101446	253935,520755	9358218,85643	
	Point ZM	Point	PV EXECUTADO	29,890236		0	0	0	0,6	50	28,540236	253967,145756	9358243,3818	
	Point ZM	Point	PV EXECUTADO	29,989194		0	0	0	0,6	51	28,689194	253998,814887	9358267,81674	
	Point ZM	Point	PV EXECUTADO	30,479568		0	0	0	0,6	52	28,779568	254030,189243	9358292,62903	
574	Point ZM	Point	PV EXECUTADO	31,87857	2,6	2,4	0	0	0,6	53	29,27857	254059,394917	9358315,35319	L4
575	Point ZM	Point	PV EXECUTADO	33,99902		0	0	0	0.6	54	32,54902	254086,242051	9358336,10955	L4

Figura 190 - Exibição dos dados selecionados em tabela

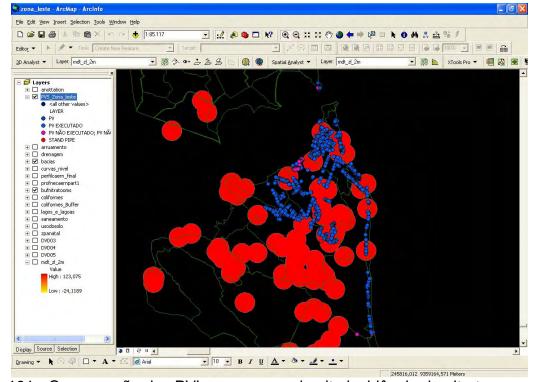


Figura 191 - Comparação dos PV's com zonas de alta incidência de nitrato

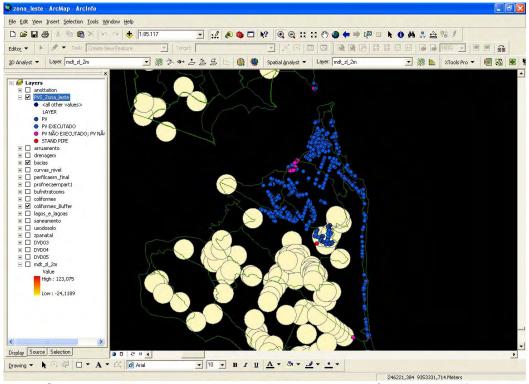


Figura 192 - Comparação dos PV's com zonas de alta incidência de coliformes

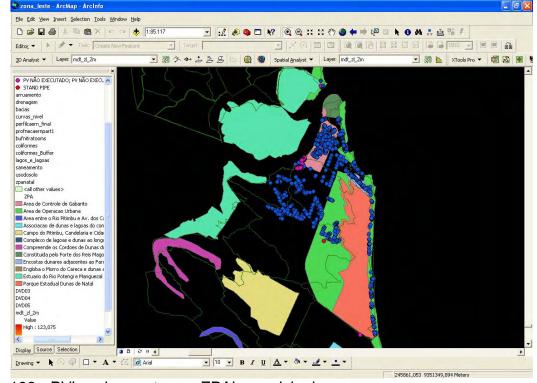


Figura 193 - PV's sobrepostos as ZPA's municipais

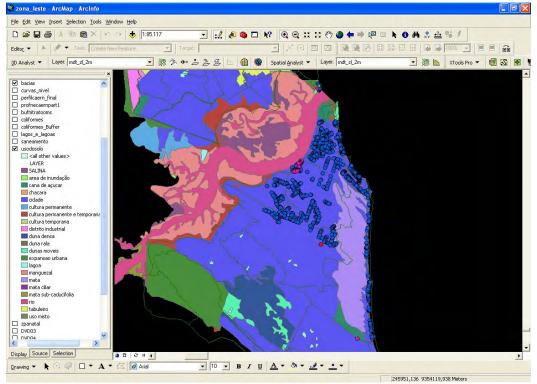


Figura 194 - PV's sobrepostos ao estudo de uso e ocupação do solo do município

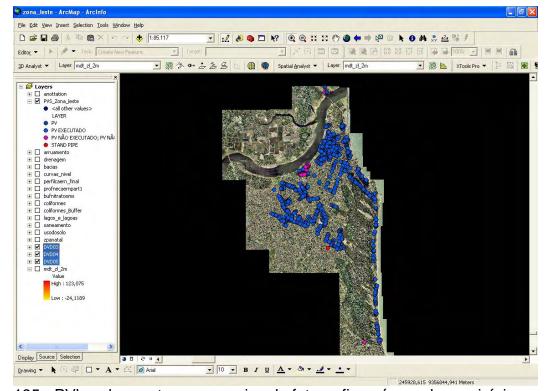


Figura 195 - PV's sobrepostos ao mosaico de fotografias aéreas do município

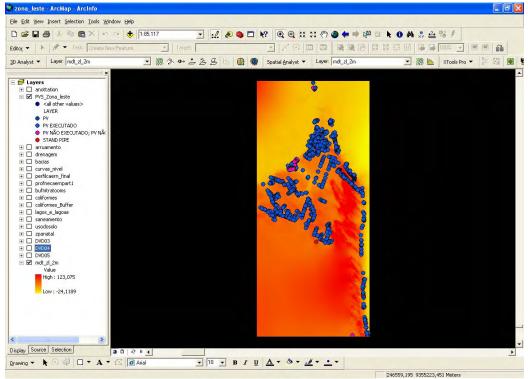


Figura 196 - PV's sobrepostos ao modelo digital de terreno da zona leste

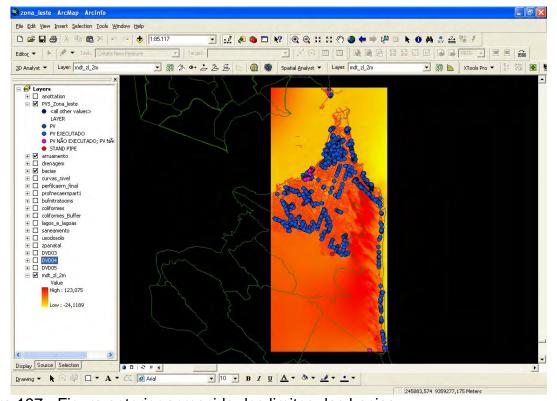


Figura 197 - Figura anterior acrescida dos limites das bacias

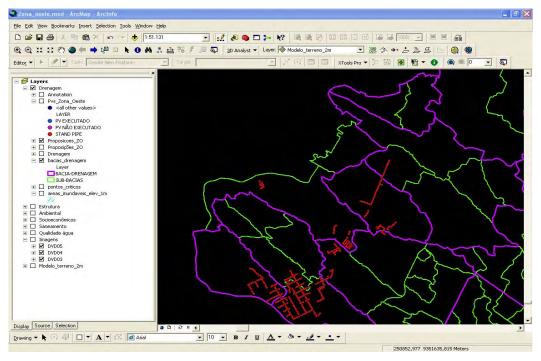


Figura 198 – PV's proposição (vermelho) para a solução dos pontos críticos na zona oeste com divisão de bacias (roxo) e sub-bacias (verde).

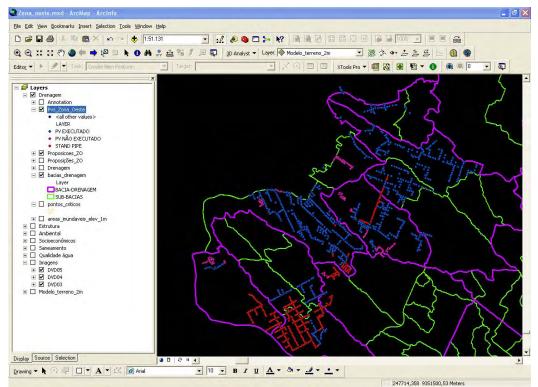


Figura 199 – PV's (executada em azul, não executada em magenta e proposição em vermelho) com divisão de bacias (em roxo) e sub-bacias (em verde).

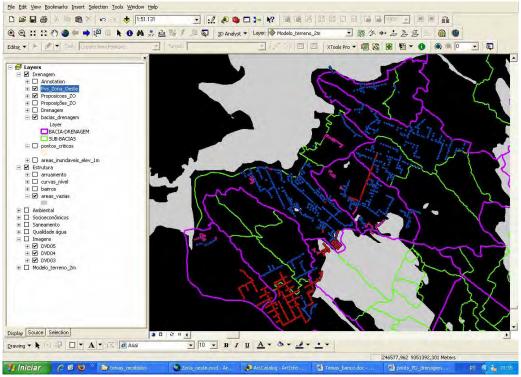
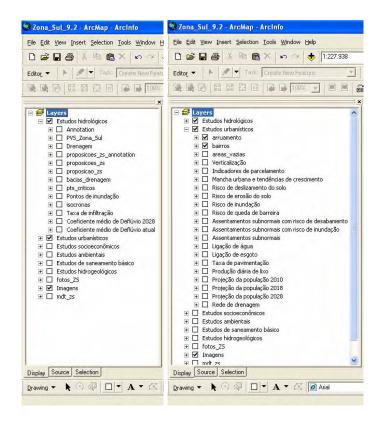



Figura 200 - PVs sobre limites das bacias e áreas vazias.

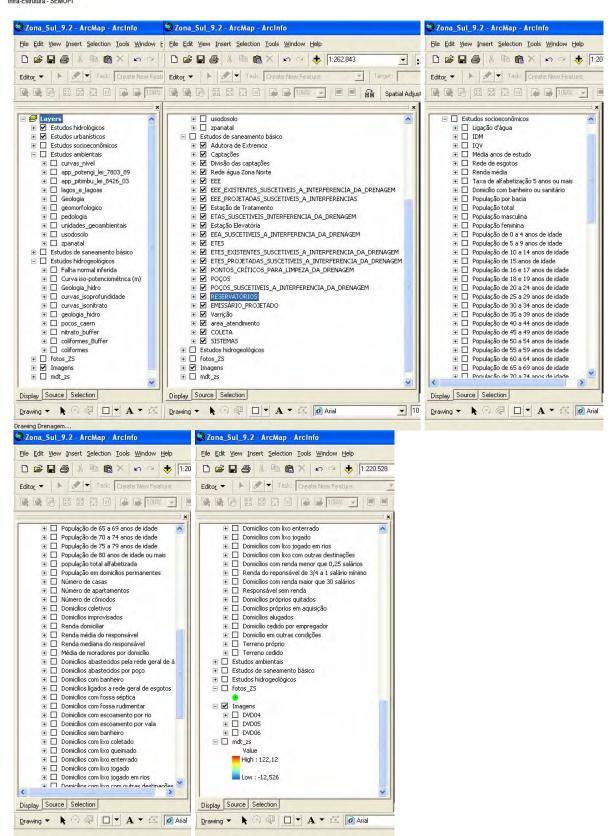


Figura 201 – temas presentes no Banco de dados

REFERÊNCIAS BIBLIOGRÁFICAS

- Al-Abed, N., F. Abdulla and A. Abu Khyarah. (2005). "GIS-hydrological models for managing water resources in the Zarqa River basin." Environmental Geology, 47 (3):405-411.
- Biswas, S., S. Sudhakar and V.R. Desai. (2002). "Remote Sensing and Geographic Information System Based Approach for Watershed Conservation." Journal of Surveying Engineering, 128 (3): 108-124.
- Câmara, G. e Medeiros, J.S. 1996 Geoprocessamento para Projetos Ambientais.INPE, São José dos Campos, SP,.
- Choi, Jin-Yong, Bernard A. Engel and Richard L. Farnsworth. (2005). "Web-based GIS and spatial decision support system for watershed management." Journal of Hydroinformatics, 7: 165-174.
- Dougherty, M., R. L. Dymond, T. J. Grizzard, A. N. Godrej, C. E. Zipper, and J. Randolph (2007). Quantifying long-term hydrologic response in an urbanizing basin. *Journal of Hydrologic Engineering*. 12(1), 33-41.
- Fankhauser, R. (1999). Automatic determination of imperviousness in urban areas from digital orthophotos. *Water Sci. Technol.* 39(9), 81-86.
- Francisco, O. S. Koka, J. Nelson. (2006). WaterNet: A GIS Application for the Analysis of Hydrologic Networks Using Vector Spatial Data. *Transactions in GIS*. 10 (3): 355-375.
- Garbrecht, J., F.L. Ogden, P.A. DeBarry and D.R. Maidment. (2001). "GIS and Distributed Watershed Models. I: Data Coverages and Sources." *Journal of Hydrologic Engineering*, 6 (6): 506-514.
- Handia L., Tembo J. M., Mwiindwa C., (2003), Potential of rainwater harvesting in urban Zambia, *Physics and Chemistry of the Earth*, Pergamon, 28, pp893-896
- Khaka E., et al, (2005), Rainwater and the Millenium Development Goals, UNEP/RELMA in ICRAF
- Kliskey, Andrew D. (1995). "The Role and Functionality of GIS as a Planning Tool in Natural-Resource Management." *Computer, Environment and Urban Systems*, 19 (1): 15-22.
- Lee, J. G., and J. P. Heaney (2003). Estimation of urban imperviousness and its impacts on storm water systems. *Journal of Water Resources Planning and Management-Asce*. 129(5), 419-426.
- Leipnik, Mark R., Karen K. Kemp and Hugo A. Loaiciga. 1993. "Implementation of GIS for Water Resources Planning and Management." *Journal of Water Resource Planning and Management*, 119 (2):184-205.
- Lu, D. S., and Q. H. Weng (2006). Use of impervious surface in urban land-use classification. *Remote Sensing of Environment*. 102(1-2), 146-160.

- McKinney, D.C., X. Cai. (2002). Linking GIS and water resources management models: and object-oriented method. *Environmental Modeling & Software*. 17: 413-425.
- Mutono S. D., (1995), Sustainability of water and sanitation systems, Sustainability in WES RUWASA experience, 21st WEDC Conference
- New M., et al., (2001), Precipitation measurements and trends in the twentieth century, *Int. J. of Climatology* 21, pp1899-1922
- Ngigi S. N., (2007) What is the limit of up-sclaing rainwater harvesting in a river basin?, *Physics and Chemistry of the Earth*, Pergamon, 28, pp943-956
- Ogden, Fred L., Jurgen Garbrecht, Paul A. DeBarry and Lynn E. Johnson. (2001). "GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models." *Journal of Hydrologic Engineering*, 6 (6): 515-523.
- Peng, Z. R. e Tsou, M. H. (2003) "Internet GIS: Distributed Geographic Information Services for the Internet and Wireless Networks", John Wiley & Sons, Inc., New Jersey.
- Qihao, W. (2001). Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. *Environ. Manage.* V28(6), 737-748.
- Sample, D. J., J. P. Heaney, L. T. Wright, and R. Koustas (2001). Geographic Information Systems, Decision Support Systems, and Urban Storm-Water Management. *Journal of Water Resources Planning and Management*. 127(3), 155-161.
- Seker, D.Z. S. Kabdasli and B. Rudvan. (2003). "Risk assessment of a dam-break using GIS technology." Water Science & Technology, 48 (10): 89-95.
- Seth, I., P. Soonthornnonda, and E. R. Christensen (2006). Use of GIS in Urban Storm-Water Modeling. *Journal of Environmental Engineering*. 132(12), 1550-1552.
- SUNP. Seattle Urban Nature Project. (2004). 16th Int'l Conference, Society for Ecological Restoration, August 24-26, 2004, Victoria, B.C. Canada. A Citywide Survey of Habitats on Public Land in Seattle: a Tool for Urban Restoration Planning and Ecological Monitoring. Matthew Ramsay, Nelson Salisbury, and Suzi Surbey. Seattle, WA.
- UNEP (United Nations Environment Programme). (2005). "Potential for Rainwater Harvesting in Africa. A GIS Overview." Nairobi.
- Wolf, Aaron T., Shira B. Yoffe and Mark Giordano. (2003). "International waters: identifying basins at risk." *Water Policy*, 5 (1):29-60.
- Wolock, D. M., T. C. Winter, and G. McMahon (2004). Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. *Environ. Manage.* 34, S71-S88.

- Xu, Z. X., K. Ito, G. A. Schultz, and J. Y. Li (2001). Integrated Hydrologic Modeling and GIS in Water Resources Management. *Journal of Computing in Civil Engineering*. 15(3), 217-223.
- Yoffe, Shira B., Greg Fiske, Mark Giordano, Meredith Giordano, Kelli Larson, Kerstin Stahl and Aaron T. Wolf. (2004). "Geography of international water conflict and cooperation: Data sets and applications." *Water Resources Research*, 40 (5): 1-12.